Advertisement

A Partition of Feature Space Based on Information Energy in Classification with Fuzzy Observations

  • Robert Burduk
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 84)

Summary

The paper considers the partition problem of feature space in classification. The partition is based on information energy for fuzzy events. In this paper we use Bayes rule for classification with fuzzy observations and exact classes. Additionally a probability of misclassifications is derived for fuzzy information on object features. The results show deterioration the quality of classification when we use fuzzy information on object features instead of exact information and are compared with the partition of feature space. Numerical example concludes the work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antos, A., Devroye, L., Gyorfi, L.: Lower Bounds for Bayes Error Estimation. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 643–645 (1999)CrossRefGoogle Scholar
  2. 2.
    Avi-Itzhak, H., Diep, T.: Arbitrarily Tight Upper and Lower Bounds on the Bayesian Probability of Error. IEEE Trans. Pattern Analysis and Machine Intelligence 18, 89–91 (1996)CrossRefGoogle Scholar
  3. 3.
    Burduk, R.: Classification error in Bayes multistage recognition task with fuzzy observations. Pattern Analysis and Applications 13(1), 85–91 (2010)CrossRefGoogle Scholar
  4. 4.
    Hanas, S.: On the Interval Approximation of a Fuzzy Number. Fuzzy Sets and Systems 122, 353–356 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Janickow, C.Z.: Fuzzy Decision Trees: Issues and Methods. IEEE Trans. Systems, Man, and Cybernetics B: Cybernetics 28, 1–14 (1998)CrossRefGoogle Scholar
  6. 6.
    Kulkarni, A.: On the Mean Accuracy of Hierarchical Classifiers. IEEE Transactions on Computers 27, 771–776 (1978)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kuncheva, L.I.: Combining Pattern Classifier: Methods and Algorithms. John Wiley, New York (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kurzyński, M.: On the Multistage Bayes Classifier. Pattern Recognition 21, 355–365 (1988)zbMATHCrossRefGoogle Scholar
  9. 9.
    Okuda, T., Tanaka, H., Asai, K.: A formulation of fuzzy decision problems with fuzzy information using probability measures of fuzzy events. Information and Control 38, 135–147 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pardo, L.: Information Energy of a Fuzzy Event and a Fuzzy Events. IEEE Trans. on Systems, Man. and Cybernetisc SMC-15(1), 139–144 (1985)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Pardo, J.A., Taneja, I.J.: On the Probability of Error in Fuzzy discrimination Problems. Kybernetes 21(6), 43–52 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pardo, L., Menendez, M.L.: Some Bounds on Probability of Error in Fuzzy Discrimination Problems. European Journal of Operational Research 53, 362–370 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Pedrycz, W.: Fuzzy Sets in Pattern Recognition: Methodology and Methods. Pattern Recognition 23, 121–146 (1990)CrossRefGoogle Scholar
  14. 14.
    Woźniak, M.: Experiments on linear combiners. Advances in Soft Computing 47, 445–452 (2008)CrossRefGoogle Scholar
  15. 15.
    Zadeh, L.A.: Probability Measures of Fuzzy Events. Journal of Mathematical Analysis and Applications 23, 421–427 (1968)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Robert Burduk
    • 1
  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations