Fusion Methods for the Two Class Recognition Problem – Analytical and Experimental Results

  • Michał Woźniak
  • Marcin Zmyślony
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 84)


In this paper we take into consideration group of decision making methods formed by the classifier fusion on the level of their discriminates . For such models we analyze what is the best way of assigning weights for them. Some analytical properties are of aforementioned methods are shown. Evaluation of proposed concept is done on the basis on computer experiment results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  2. 2.
    Woźniak, M., Zmyślony, M.: Designing fuser on the basis of discriminants - evolutionary and neural methods of training. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) Hybrid Artificial Intelligence Systems. LNCS, vol. 6077, pp. 590–597. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Kuncheva, L.I.: Combining pattern classifiers: Methods and algorithms. Wiley, Chichester (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Biggio, B., Fumera, G., Roli, F.: Bayesian Analysis of Linear Combiners. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 292–301. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Duin, R.P.W.: The Combining Classifier: to Train or Not to Train? In: Proc. of the ICPR 2002, Quebec City (2002)Google Scholar
  6. 6.
    Duda, R.O., et al.: Pattern Classification. Wiley-Interscience, Hoboken (2001)MATHGoogle Scholar
  7. 7.
    Zmyślony, M., Woźniak, M., Jackowski, K.: Oracle - is it really the best possible model? In: Choraś, R.S., Zabłudowski, A. (eds.) Image Processing & Communications Challenges, pp. 112–119. Exit, Warsaw (2009)Google Scholar
  8. 8.
    Woźniak, M., Zmyślony, M.: Method of designing classifier fuser - evolutionary approach. Modelling and simulation of systems. In: Proceedings of the 44th Spring International Conference, pp. 88–92. MARQ, Ostrava (2010)Google Scholar
  9. 9.
    Woźniak, M.: Experiments on linear combiners. In: Pietka, E., Kawa, J. (eds.) Information technologies in biomedicine, pp. 445–452. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Duin, R.P.W., Tax, D.M.J.: Experiments with Classifier Combining Rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34, 299–314 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Van Erp, M., Vuurpijl, L.G., Schomaker, L.R.B.: An overview and comparison of voting methods for pattern recognition. In: Proc. of IWFHR 8, Canada, pp. 195–200 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michał Woźniak
    • 1
  • Marcin Zmyślony
    • 1
  1. 1.Chair of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations