A Practical Management of Fuzzy Truth-Degrees Using FLOPER

  • Pedro J. Morcillo
  • Ginés Moreno
  • Jaime Penabad
  • Carlos Vázquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6403)


During the last two years, our developments regarding the design of the FLOPER tool (“Fuzzy LOgic Programming Environment for Research”), have been devoted to implant in its core a rule-based, easy representation of lattices representing fuzzy notions of truth degrees beyond the boolean case, in order to work with flexible programs belonging to the so-called multi-adjoint logic approach. Now, the system improves its initial running/debugging/tracing capabilities for managing this kind of fuzzy logic programs, with new options for manipulating in a classical Prolog style the mathematical foundations of the enrichment introduced by multi-adjoint lattices. In particular, we show that for a given program and query, many different answers can be obtained when changing the assumption of truth in a single work session. The experience related here evidences the expressive power of Prolog rules (i.e., clauses) for implementing rich versions of multi-adjoint lattices in a very easy way, as well as its crucial role in further fuzzy logic computations.


Fuzzy Logic Logic Program Logic Programming Truth Degree Fuzzy Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abietar, J.M., Morcillo, P.J., Moreno, G.: Designing a software tool for fuzzy logic programming. In: Simos, T.E., Maroulis, G. (eds.) Proc. of the International Conference of Computational Methods in Sciences and Engineering ICCMSE 2007. Computation in Modern Science and Engineering, vol. 2, pp. 1117–1120. American Institute of Physics (distributed by Springer) (2007)Google Scholar
  2. 2.
    Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley & Sons, Inc., Chichester (1995)Google Scholar
  3. 3.
    Bratko, I.: Prolog Programming for Artificial Intelligence. Addison Wesley, Reading (September 2000)zbMATHGoogle Scholar
  4. 4.
    Guadarrama, S., Muñoz, S., Vaucheret, C.: Fuzzy Prolog: A new approach using soft constraints propagation. Fuzzy Sets and Systems 144(1), 127–150 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Guerrero, J.A., Moreno, G.: Optimizing fuzzy logic programs by unfolding, aggregation and folding. Electronic Notes in Theoretical Computer Science 219, 19–34 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ishizuka, M., Kanai, N.: Prolog-ELF Incorporating Fuzzy Logic. In: Joshi, A.K. (ed.) Proceedings of the 9th Int. Joint Conference on Artificial Intelligence, IJCAI 1985, pp. 701–703. Morgan Kaufmann, San Francisco (1985)Google Scholar
  7. 7.
    Julián, P., Medina, J., Moreno, G., Ojeda, M.: Thresholded tabulation in a fuzzy logic setting. Electronic Notes in Theoretical Computer Science 248, 115–130 (2009)CrossRefGoogle Scholar
  8. 8.
    Julián, P., Medina, J., Moreno, G., Ojeda, M.: Efficient thresholded tabulation for fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundations of Reasoning under Uncertainty) 249, 125–141 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Julián, P., Moreno, G., Penabad, J.: On Fuzzy Unfolding. A Multi-adjoint Approach. Fuzzy Sets and Systems 154, 16–33 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Julián, P., Moreno, G., Penabad, J.: Operational/Interpretive Unfolding of Multi-adjoint Logic Programs. Journal of Universal Computer Science 12(11), 1679–1699 (2006)Google Scholar
  11. 11.
    Julián, P., Moreno, G., Penabad, J.: Measuring the interpretive cost in fuzzy logic computations. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 28–36. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Julián, P., Moreno, G., Penabad, J.: An Improved Reductant Calculus using Fuzzy Partial Evaluation Techniques. Fuzzy Sets and Systems 160, 162–181 (2009), doi:10.1016/j.fss.2008.05.006MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12, 335–367 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lassez, J.L., Maher, M.J., Marriott, K.: Unification Revisited. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 587–625. Morgan Kaufmann, Los Altos (1988)CrossRefGoogle Scholar
  15. 15.
    Li, D., Liu, D.: A fuzzy Prolog database system. John Wiley & Sons, Inc., Chichester (1990)Google Scholar
  16. 16.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lloyd, J.W.: Declarative programming for artificial intelligence applications. SIGPLAN Not. 42(9), 123–124 (2007)Google Scholar
  18. 18.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 351–364. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint logic programming. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 290–297. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Morcillo, P.J., Moreno, G.: Programming with Fuzzy Logic Rules by using the FLOPER Tool. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp. 119–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Morcillo, P.J., Moreno, G.: Modeling interpretive steps in fuzzy logic computations. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS (LNAI), vol. 5571, pp. 44–51. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Morcillo, P.J., Moreno, G.: On cost estimations for executing fuzzy logic programs. In: Arabnia, H.R., de la Fuente, D., Olivas, J.A. (eds.) Proceedings of the 11th International Conference on Artificial Intelligence, ICAI 2009, Las Vegas, Nevada, USA, July 13-16, pp. 217–223. CSREA Press (2009)Google Scholar
  24. 24.
    Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: Modeling interpretive steps into the FLOPER environment. In: Proceedings of the 12th International Conference on Artificial Intelligence, ICAI 2010, Las Vegas, Nevada, USA, July 12-15, CSREA Press (2010) (accepted for publication)Google Scholar
  25. 25.
    Straccia, U.: Query answering in normal logic programs under uncertainty. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 687–700. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Straccia, U.: Managing uncertainty and vagueness in description logics, logic programs and description logic programs. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 54–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems 124(1), 361–370 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pedro J. Morcillo
    • 1
  • Ginés Moreno
    • 1
  • Jaime Penabad
    • 1
  • Carlos Vázquez
    • 1
  1. 1.Faculty of Computer Science EngineeringUniversity of Castilla-La ManchaAlbaceteSpain

Personalised recommendations