An XML Format for Association Rule Models Based on the GUHA Method

  • Tomáš Kliegr
  • Jan Rauch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6403)


This paper proposes the GUHA AR Model, an XML Schema-based formalism for representing the setting and results of association rule (AR) mining tasks. In contrast to the item-based representation of the PMML 4.0 AssociationModel, the proposed expresses the association rule as a couple of general boolean attributes related by condition on one or more arbitrary interest measures. This makes the GUHA AR Model suitable also for other than apriori-based AR mining algorithms, such as those mining for disjunctive or negative ARs. In addition, there are practically important research results on special logical calculi formulas which correspond to such association rules. The GUHA AR Model is intended as a replacement of the PMML AssociationModel. It is tightly linked to the Background Knowledge Exchange Format (BKEF), an XML schema proposed for representation of data-mining related domain knowledge, and to the AR Data Mining Ontology ARON.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonie, M.-L., Zaïane, O.R.: Mining positive and negative association rules: an approach for confined rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27–38. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Berka, P., Rauch, J., Marie, T.: Data mining in atherosclerosis risk factor data. In: Data Mining and Medical Knowledge Management: Cases and Applications, vol. 15, pp. 376–397. IGI Global (2009)Google Scholar
  3. 3.
    Guazzelli, A., Lin, W.-C., Jena, T.: PMML in Action (2010)Google Scholar
  4. 4.
    Hahsler, M., Grün, B., Hornik, K.: Arules - a computational environment for mining association rules and frequent item sets. Journal of Statistical Software 14(15), 1–25, 9 (2005)CrossRefGoogle Scholar
  5. 5.
    Hájek, P. (ed.): International Journal of Man-Machine Studies, second special issue on GUHA 15 (1981)Google Scholar
  6. 6.
    Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation. Springer, Heidelberg (1978)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hájek, P., Holeňa, M., Rauch, J.: The GUHA method and its meaning for data mining. Journal of Computer and System Science, 34–38 (2010)Google Scholar
  8. 8.
    Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining — a general survey and comparison. SIGKDD Explor. Newsl. 2(1), 58–64 (2000)CrossRefGoogle Scholar
  9. 9.
    Kliegr, T., Ovečka, M., Zemánek, J.: Topic maps for association rule mining. In: Proceedings of TMRA 2009. University of Leipzig (2009)Google Scholar
  10. 10.
    Kliegr, T., Ralbovský, M., Svátek, V., Šimůnek, M., Jirkovský, V., Nemrava, J., Zemánek, J.: Semantic analytical reports: A framework for post-processing data mining results. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMS 2009. LNCS, vol. 5722, pp. 453–458. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kliegr, T., Svátek, V., Šimůnek, M., Štastný, D., Hazucha, A.: XML schema and topic map ontology for background knowledge in data mining. In: The 2nd IRMLES ESWC Workshop (2010)Google Scholar
  12. 12.
    Lín, V., Rauch, J., Svátek, V.: Content-based retrieval of analytic reports. In: Rule Markup Languages for Business Rules on the Semantic Web, Sardinia 2002, pp. 219–224 (2002)Google Scholar
  13. 13.
    Martin, R., Tomáš, K.: Using disjunctions in association mining. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 339–351. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Nanavati, A.A., Chitrapura, K.P., Joshi, S., Krishnapuram, R.: Mining generalised disjunctive association rules. In: CIKM 2001, pp. 482–489. ACM, New York (2001)Google Scholar
  15. 15.
    Olaru, A., Marinica, C., Guillet, F.: Local mining of association rules with rule schemas. In: CIDM, pp. 118–124. IEEE, Los Alamitos (2009)Google Scholar
  16. 16.
    Rauch, J.: Logic of association rules. Applied Intelligence (22), 9–28 (2005)Google Scholar
  17. 17.
    Rauch, J.: Considerations on logical calculi for dealing with knowledge in data mining. In: Data Mining: Foundations and Practice, pp. 177–199. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Rauch, J.: Logical aspects of the measures of interestingness of association rules. In: Advances in Machine Learning II, pp. 175–203. Springer, Berlin (2010)CrossRefGoogle Scholar
  19. 19.
    Rauch, J., Šimůnek, M.: An alternative approach to mining association rules. Foundation of Data Mining and Knowledge Discovery 6, 211–231 (2005)Google Scholar
  20. 20.
    Šimůnek, M.: Academic KDD project LISp-Miner. In: Advances in Soft Computing - Intelligent Systems Design and Applications, pp. 263–272. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Wettschereck, D., Mueller, S.: Exchanging data mining models with the Predictive Model Markup Language. In: Proceedings of the ECML/PKDD 2001 Worksh. on Integr. of DM Decision Supp. and Meta-Learning, pp. 55–66 (2001)Google Scholar
  22. 22.
    Wu, T., Chen, Y., Han, J.: Association mining in large databases: A re-examination of its measures. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 621–628. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Zhang, L., Nie, G., Shi, Y.: A survey of interestingness measures for association rules. In: International Conference on Business Intelligence and Financial Engineering, pp. 460–463 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tomáš Kliegr
    • 1
  • Jan Rauch
    • 1
  1. 1.Dept. Information and Knowledge EngineeringUniversity of Economics, PraguePraha 3Czech Republic

Personalised recommendations