Advertisement

On the Problem of Computing Ambiguity Propagation and Well-Founded Semantics in Defeasible Logic

  • Ho-Pun Lam
  • Guido Governatori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6403)

Abstract

In this paper we present the well founded variants of ambiguity blocking and ambiguity propagating defeasible logics. We also show how to extend SPINdle, a state of the art, defeasible logic implementation to handle all such variants of defeasible logic.

Keywords

Ambiguity Propagation Well-Founded Semantics Defeasible logics Consequences finding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nute, D.: Defeasible logic. In: Gabbay, D., Hogger, C. (eds.) Handbook of Logic for Artificial Intelligence and Logic Programming, vol. III, pp. 353–395. Oxford University Press, Oxford (1994)Google Scholar
  2. 2.
    Nute, D.: Defeasible logic. In: 14th International Conference on Application of Prolog, IF Computer, Japan, pp. 87–114 (2001)Google Scholar
  3. 3.
    Antoniou, G.: A Discussion of Some Intuitions of Defeasible Reasoning. In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 311–320. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of Logic Programming 1(6), 691–711 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible reasoning systems. International Journal on Artificial Intelligence Tools 10(4), 483–501 (2001)CrossRefGoogle Scholar
  6. 6.
    Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the semantic web. International Journal of Semantic Web and Information Systems (IJSWIS) 2(1), 1–41 (2006)CrossRefGoogle Scholar
  7. 7.
    Lam, H.P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Billington, D., Antoniou, G., Governatori, G., Maher, M.J.: An inclusion theorem for defeasible logic. ACM Transactions in Computational Logic (2010) (to appear)Google Scholar
  9. 9.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasible logic. ACM Transactions on Computational Logic 2(2), 255–286 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework for defeasible logics. In: AAAI 2000, pp. 401–405. AAAI/MIT Press (2000)Google Scholar
  11. 11.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 619–649 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Billington, D.: Propositional clausal defeasible logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 34–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Billington, D.: A plausible logic which detects loops. In: NMR 2004 (2004)Google Scholar
  14. 14.
    Lee, J.: A model-theoretic counterpart of loop formulas. In: IJCAI 2005, pp. 503–508 (2005)Google Scholar
  15. 15.
    Anger, C., Gebser, M., Schaub, T.: Approaching the core of unfounded sets. In: NMR 2006, pp. 58–66 (2006)Google Scholar
  16. 16.
    Maier, F., Nute, D.: Well-founded semantics for defeasible logic. Synthese (2008)Google Scholar
  17. 17.
    Maher, M.J., Governatori, G.: A semantic decomposition of defeasible logics. In: AAAI 1999, pp. 299–305 (1999)Google Scholar
  18. 18.
    Madalińska-Bugaj, E., Lukaszewicz, W.: Formalizing defeasible logic in cake. Fundam. Inf. 57(2-4), 193–213 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Antoniou, G., Bikakis, A.: DR-Prolog: A system for defeasible reasoning with rules and ontologies on the semantic web. IEEE Trans. Knowl. Data Eng. 19(2), 233–245 (2007)CrossRefGoogle Scholar
  20. 20.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible reasoning logics and its implementation. In: ECAI 2000, pp. 459–463 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ho-Pun Lam
    • 1
    • 2
  • Guido Governatori
    • 2
  1. 1.School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.NICTA, Queensland Research LaboratoryBrisbaneAustralia

Personalised recommendations