Trust and Privacy Enabled Service Composition Using Social Experience

  • Shahab Mokarizadeh
  • Nima Dokoohaki
  • Mihhail Matskin
  • Peep Küngas
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 341)

Abstract

In this paper, we present a framework for automatic selection and composition of services which exploits trustworthiness of services as a metric for measuring the quality of service composition. Trustworthiness is defined in terms of service reputation extracted from user profiles. The profiles are, in particular, extracted and inferred from a social network which accumulates users past experience with corresponding services. Using our privacy inference model we, first, prune social network to hide privacy sensitive contents and, then, utilize a trust inference based algorithm to measure reputation score of each individual service, and subsequently trustworthiness of their composition.

Keywords

Social Network Privacy Trust Web-service Web-service Composition 

References

  1. 1.
    Kuter, U., Golbeck, J.: Semantic Web Service Composition in Social Environments. In: Proceedings of the 8th International Semantic Web Conference (2009)Google Scholar
  2. 2.
    Mokarizadeh, S., Grosso, A., Matskin, M., Kungas, P., Haseeb, A.: Applying Semantic Web Service Composition for Action Planning in Multi-robot Systems. In: Proc. of Fourth International Conference on Internet and Web Applications and Services, pp. 370–376. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  3. 3.
    Schroth, C., Janner, T.: Web 2.0 and SOA: Converging Concepts Enabling the Internet of Services. IT Professional 9(3), 36–41 (2007)CrossRefGoogle Scholar
  4. 4.
    Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Selecting Web Services Based on Past User Experiences. In: Proc. of 4th IEEE Asia-Pacific Services Computing Conference (2009)Google Scholar
  5. 5.
  6. 6.
    Dokoohaki, N., Matskin, M.: Personalizing human interaction through hybrid ontological profiling: Cultural heritage case study. In: Ronchetti, M. (ed.) 1st Workshop on Semantic Web Applications and Human Aspects, In Conjunction with Asian Semantic Web Conference (2008)Google Scholar
  7. 7.
    Katz, Y., Golbeck, J.: Social network-based trust in prioritized default logic. In: Proceedings of the 21st National Conference on Artificial intelligence, vol. 2, pp. 1345–1350 (2006)Google Scholar
  8. 8.
    Ziegler, C., Lausen, G.: Spreading Activation Models for Trust Propagation. In: Proceedings of the 2004 IEEE International Conference on E-Technology, E-Commerce and E-Service, pp. 83–97 (2004)Google Scholar
  9. 9.
    O’reilly, T.: What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software. Communications & Strategies 1, 17 (2007)Google Scholar
  10. 10.
    Galizia, S., Gugliotta, A., Domingue, J.: A Trust Based Methodology for Web Service Selection. In: Proc. of the international Conference on Semantic Computing, pp. 193–200 (2007)Google Scholar
  11. 11.
    Kungas, P., Dumas, M.: Cost-Effective Semantic Annotation of XML Schemas and Web Service Interfaces. In: Proceedings of the 2009 IEEE International Conference on Services Computing Symposium on Compiler Construction, pp. 372–379. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  12. 12.
    Zhang, Q., Qi, Y., Zhao, J., Hou, D., Niu, Y.: Fuzzy Privacy Decision for Context-Aware Access personal Information. University Journal of Natural Sciences 12(5), 941–945 (2007)CrossRefGoogle Scholar
  13. 13.
    Zarghami, A., Fazeli, S., Dokoohaki, N., Matskin, M.: Social Trust-Aware Recommendation System: A T-Index Approach. In: Proceedings of the 2009 IEEE /WIC /ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, vol. 3, pp. 85–90. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  14. 14.
    Kahan, D.R., Nowlan, M.F., Blake, M.B.: Taming Web Services in the Wild. In: Proceedings of the IEEE International Conference on Web Services, ICWS, pp. 957–958. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  15. 15.
    Paradesi, S., Doshi, P., Swaika, S.: Integrating Behavioral Trust in Web Service Compositions. In: Proceedings of the 2009 IEEE International Conference on Web Services, pp. I453–I460 (2009)Google Scholar
  16. 16.
    Cai, S., Zou, Y., Xie, B., Shao, W.: Mining the Web of Trust for Web Services Selection. In: Proc. of 2008 IEEE International Conference on Web Services, pp. 809–810. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  17. 17.
    Nepal, S., Malik, Z., Bouguettaya, A.: Reputation Propagation in Composite Services. In: Proc. of the 2009 IEEE International Conference on Web Services, pp. 295–302. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  18. 18.
    Banks, L., Wu, S.F.: All Friends Are Not Created Equal: An Interaction Intensity Based Approach to Privacy in Online Social Networks. In: International Conference on Computational Science and Engineering, vol. 4, pp. 970–974 (2009)Google Scholar
  19. 19.
    Liu, K., Terzi, E.: A Framework for Computing the Privacy Scores of Users in Online Social Networks. In: Proc. of 9th IEEE International Conference on Data Mining, pp. 288–297 (2009)Google Scholar
  20. 20.
    Golbeck, J.: Trust and nuanced profile similarity in online social networks. ACM Trans. Web 3(4), 1–33 (2009)CrossRefGoogle Scholar
  21. 21.
    Bonnati, P.A., et al.: Rule-based Policy Specification: State of the Art and Future Work. Reasoning on the Web with Rules and Semantics, 61–62 (2004), http://rewerse.net/deliverables/i2-d1.pdf
  22. 22.
    Mokarizadeh, S., Kungas, P., Matskin, M.: Ontology Learning for Cost-Effective Large-scale Semantic Annotation of XML Schemas and Web Service Interfaces. In: Proc. of 17th Int. Conf. on Knowledge Engineering and Knowledge Management, EKAW 2010 (to appear 2010)Google Scholar
  23. 23.

Copyright information

© IFIP 2010

Authors and Affiliations

  • Shahab Mokarizadeh
    • 1
  • Nima Dokoohaki
    • 1
  • Mihhail Matskin
    • 1
    • 2
  • Peep Küngas
    • 3
  1. 1.ICT SchoolRoyal Institute Of Technology (KTH)StockholmSweden
  2. 2.Norwegian University of Science and Technology (NTNU)TrondheimNorway
  3. 3.University of TartuTartuEstonia

Personalised recommendations