A Calculus for Game-Based Security Proofs

  • David Nowak
  • Yu Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6402)

Abstract

The game-based approach to security proofs in cryptography is a widely-used methodology for writing proofs rigorously. However a unifying language for writing games is still missing. In this paper we show how CSLR, a probabilistic lambda-calculus with a type system that guarantees that computations are probabilistic polynomial time, can be equipped with a notion of game indistinguishability. This allows us to define cryptographic constructions, effective adversaries, security notions, computational assumptions, game transformations, and game-based security proofs in the unified framework provided by CSLR. Our code for cryptographic constructions is close to implementation in the sense that we do not assume arbitrary uniform distributions but use a realistic algorithm to approximate them. We illustrate our calculus on cryptographic constructions for public-key encryption and pseudorandom bit generation.

Keywords

game-based proofs implicit complexity computational indistinguishability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Affeldt, R., Nowak, D., Yamada, K.: Certifying assembly with formal cryptographic proofs: the case of BBS. In: Proceedings of the 9th International Workshop on Automated Verification of Critical Systems, AVoCS 2009 (2009)Google Scholar
  2. 2.
    Backes, M., Berg, M., Unruh, D.: A formal language for cryptographic pseudocode. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 353–376. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: Proceedings of the 36th ACM SIGPLAN- SIGACT Symposium on Principles of Programming Languages (POPL 2009), pp. 90–101. ACM Press, New York (2009)Google Scholar
  4. 4.
    Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. In: Computational Complexity, vol. 2, pp. 97–110 (1992)Google Scholar
  5. 5.
    Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm. Journal of Cryptology 21, 469–491 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo random number generator. SIAM Journal on Computing. Society for Industrial and Applied Mathematics 15(2), 364–383 (1986)MATHGoogle Scholar
  8. 8.
    Boneh, D.: The Decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–83. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004)Google Scholar
  10. 10.
    Corin, R., den Hartog, J.: A probabilistic Hoare-style logic for game-based cryptographic proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 252–263. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards automated proofs for asymmetric encryption schemes in the random oracle model. In: Proceedings of the 15th ACM Conference Computer and Communications Security, CCS 2008, pp. 371–380. ACM Press, New York (2008)CrossRefGoogle Scholar
  12. 12.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Goldreich, O.: The Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences (JCSS) 28(2), 270–299 (1984) (An earlier version appeared in proceedings of STOC 1982)Google Scholar
  16. 16.
    Hofmann, M.: A Mixed Modal/Linear Lambda Calculus with Applications to Bellantoni-Cook Safe Recursion. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 275–294. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Hofmann, M.: Safe recursion with higher types and BCK-algebra. In: Annals of Pure and Applied Logic, vol. 1414, 104(1-3), pp. 113–166 (2000)Google Scholar
  18. 18.
    Hurd, J.: A formal approach to probabilistic termination. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 230–245. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Impagliazzo, R., Kapron, B.M.: Logics for reasoning about cryptographic constructions. Journal of Computer and System Sciences 72(2), 286–320 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefMATHGoogle Scholar
  21. 21.
    Mitchell, J.C., Mitchell, M., Scedrov, A.: A linguistic characterization of bounded oracle computation and probabilistic polynomial time. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS 1998), pp. 725–733 (1998)Google Scholar
  22. 22.
    Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic polynomial-time process calculus for the analysis of cryptographic protocols. Theoretical Computer Science 353(1-3), 118–164 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nowak, D.: A framework for game-based security proofs. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 319–333. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Nowak, D.: On formal verification of arithmetic-based cryptographic primitives. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 368–382. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions. In: Proceedings of the 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2002), pp. 154–165 (2002)Google Scholar
  27. 27.
    Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004)Google Scholar
  28. 28.
    Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the IEEE 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 80–91. IEEE, Los Alamitos (1982)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y.: The Computational SLR: A Logic for Reasoning about Computational Indistinguishability. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 401–415. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Nowak
    • 1
  • Yu Zhang
    • 2
  1. 1.Research Center for Information SecurityAISTJapan
  2. 2.Institute of SoftwareChinese Academy of SciencesChina

Personalised recommendations