Identification Schemes of Proofs of Ability Secure against Concurrent Man-in-the-Middle Attacks

  • Hiroaki Anada
  • Seiko Arita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6402)

Abstract

We give a series of three identification schemes. All of them are basically 2-round interactive proofs of ability to complete Diffie-Hellman tuples. Despite their simple protocols, the second and the third schemes are proven secure against concurrent man-in-the-middle attacks based on tight reduction to the Gap Computational Diffie-Hellman Assumption without the random oracle. In addition, they are more efficient than challenge-and-response 2-round identification schemes from previously known EUF-CMA signature schemes in the standard model.

Our first scheme is similar to half the operation of Diffie-Hellman Key-Exchange. The first scheme is secure only against two-phase attacks based on strong assumptions. Applying the tag framework, and employing a strong one-time signature for the third scheme, we get the preferable schemes above.

Keywords

Identification Scheme Concurrent Man-in-the-Middle Attack the Gap Computational Diffie-Hellman Assumption Tight Reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arita, S., Kawashima, N.: An Identification Scheme with Tight Reduction. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E90-A(9), 1949–1955 (2007)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification Protocols Secure against Reset Attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 495–511. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bleichenbacher, D., Maurer, U.: On the Efficiency of One-time Digital Signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 196–209. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Dakdouk, R.R.: Extractable Perfectly One-way Functions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Crame, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Dakdouk, R.R.: Theory and Application of Extractable Functions. Doctor of Philosophy Dissertation, Yale University, USA (2009)Google Scholar
  11. 11.
    Damgård, I.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Gennaro, R.: Multi-trapdoor Commitments and their Applications to Non-Malleable Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Guillou, L., Quisquater, J.J.: A Paradoxical Identity-Based Signature Scheme Resulting from Zero-Knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  15. 15.
    Katz, J.: Efficient Cryptographic Protocols Preventing “Man-in-the-Middle” Attacks. Doctor of Philosophy Dissertation, Columbia University, USA (2002)Google Scholar
  16. 16.
    Katz, J.: Efficient and Non-Malleable Proofs of Plaintext Knowledge and Applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 211–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Maurer, U., Wolf, S.: Lower Bounds on Generic Algorithms in Groups. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptology 4(3), 161–174 (1991)CrossRefMATHGoogle Scholar
  22. 22.
    Stinson, D.R., Wu, J.: An Efficient and Secure Two-flow Zero-Knowledge Identification Protocol. Journal of Mathematical Cryptology 1(3), 201–220 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wu, J., Stinson, D.R.: An Efficient Identification Protocol and the Knowledge of Exponent Assumption. Cryptology ePrint Archive, 2007/479, http://eprint.iacr.org/
  24. 24.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hiroaki Anada
    • 1
  • Seiko Arita
    • 1
  1. 1.Institute of Information SecurityYokohamaJapan

Personalised recommendations