Advertisement

A Timed-Release Proxy Re-encryption Scheme and Its Application to Fairly-Opened Multicast Communication

  • Keita Emura
  • Atsuko Miyaji
  • Kazumasa Omote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6402)

Abstract

Timed-Release Encryption (TRE) (proposed by May in 1993) prevents even a legitimate recipient decrypting a ciphertext before a semi-trusted Time Server (TS) sends trapdoor s T assigned with a release time T of the encryptor’s choice. Cathalo et al. (ICICS2005) and Chalkias et al. (ESORICS2007) have already considered encrypting a message intended to multiple recipients with the same release time. These schemes are efficient compared with previous TRE schemes with recipient-to-recipient encryption, since the most costly part (especially pairing computation) has only to be computed once, and this element is used commonly. One drawback of these schemes is the ciphertext size and computational complexity, which depend on the number of recipients N. In this paper, for the first time we propose Timed-Release Proxy Re-Encryption (TR-PRE) scheme. As in PRE, a semi-trusted proxy transforms a ciphertext under a particular public key (this can be regarded as a mailing list) into re-encrypted ciphertexts under each recipient (who can be regarded as mailing list members). Even if the proxy transformation is applied to a TRE ciphertext, the release time is still effective. An encryptor can transfer N-dependent computation parts to the proxy. This function can be applied to multicast communication with a release time indication. For example, in an on-line examination, an examiner sends encrypted e-mails to each examinee, and each examination can be fairly opened at the same time. Our TR-PRE scheme is provably secure under both chosen-time period chosen-ciphertext attack (IND-CTCA) and replayable chosen-ciphertext attack (IND-RCCA) without random oracles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In: Public Key Cryptography, pp. 201–216 (2007)Google Scholar
  3. 3.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)Google Scholar
  4. 4.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Bobba, R., Muggli, J., Pant, M., Basney, J., Khurana, H.: Usable secure mailing lists with untrusted servers. In: IDtrust, pp. 103–116 (2009)Google Scholar
  6. 6.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: ACM Conference on Computer and Communications Security, pp. 185–194 (2007)Google Scholar
  10. 10.
    Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and non-interactive timed-release encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved anonymous timed-release encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 311–326. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-release and key-insulated public key encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 191–205. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably secure timed-release public key encryption. ACM Trans. Inf. Syst. Secur. 11(2) (2008)Google Scholar
  14. 14.
    Chow, S.S.M., Roth, V., Rieffel, E.G.: General certificateless encryption and timed-release encryption. In: SCN, pp. 126–143 (2008)Google Scholar
  15. 15.
    Chow, S.S.M., Yiu, S.-M.: Timed-release encryption revisited. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 38–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Dent, A.W., Tang, Q.: Revisiting the security model for timed-release encryption with pre-open capability. In: ISC, pp. 158–174 (2007)Google Scholar
  17. 17.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  21. 21.
    Hwang, Y.H., Yum, D.H., Lee, P.J.: Timed-release encryption with pre-open capability and its application to certified e-mail system. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Khurana, H., Hahm, H.-S.: Certified mailing lists. In: ASIACCS, pp. 46–58 (2006)Google Scholar
  23. 23.
    Khurana, H., Heo, J., Pant, M.: From proxy encryption primitives to a deployable secure-mailing-list solution. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 260–281. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Khurana, H., Slagell, A.J., Bonilla, R.: SELS: a secure e-mail list service. In: SAC 2005, pp. 306–313 (2005)Google Scholar
  25. 25.
    Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    May, T.C.: Time-release crypto. Unpublished manuscript (1993)Google Scholar
  27. 27.
    Mizuno, T., Doi, H.: Hybrid proxy re-encryption scheme for attribute-based encryption. In: INSCRYPT, pp. 385–399 (2009)Google Scholar
  28. 28.
    Nakai, Y., Matsuda, T., Kitada, W., Matsuura, K.: A generic construction of timed-release encryption with pre-open capability. In: Takagi, T., Echizen, I. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 53–70. Springer, Heidelberg (2009)Google Scholar
  29. 29.
    Teranishi, I., Oyama, T., Ogata, W.: General conversion for obtaining strongly existentially unforgeable signatures. IEICE Transactions 91-A(1), 94–106 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Keita Emura
    • 1
  • Atsuko Miyaji
    • 2
  • Kazumasa Omote
    • 2
  1. 1.Center for Highly Dependable Embedded Systems TechnologyJapan
  2. 2.School of Information ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations