A Logical Framework to Deal with Variability

  • Patrizia Asirelli
  • Maurice H. ter Beek
  • Alessandro Fantechi
  • Stefania Gnesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6396)

Abstract

We present a logical framework that is able to deal with variability in product family descriptions. The temporal logic MHML is based on the classical Hennessy–Milner logic with Until and we interpret it over Modal Transition Systems (MTSs). MTSs extend the classical notion of Labelled Transition Systems by distinguishing possible (may) and required (must) transitions: these two types of transitions are useful to describe variability in behavioural descriptions of product families. This leads to a novel deontic interpretation of the classical modal and temporal operators, which allows the expression of both constraints over the products of a family and constraints over their behaviour in a single logical framework. Finally, we sketch model-checking algorithms to verify MHML formulae as well as a way to derive correct products from a product family description.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wąsowski, A.: 20 Years of Modal and Mixed Specifications. B. EATCS 95, 94–129 (2008)MathSciNetMATHGoogle Scholar
  2. 2.
    Åqvist, L.: Deontic Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 8, pp. 147–264. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  3. 3.
    Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Deontic Logics for modelling Behavioural Variability. In: Benavides, D., Metzger, A., Eisenecker, U. (eds.) Proceedings Variability Modelling of Software-intensive Systems (VaMoS 2009). ICB Research Report, vol. 29, pp. 71–76. Universität Duisburg, Essen (2009)Google Scholar
  4. 4.
    Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A deontic logical framework for modelling product families. In: Benavides, D., Batory, D., Grünbacher, P. (eds.) Proceedings Variability Modelling of Software-intensive Systems (VaMoS 2010). ICB Research Report, vol. 37, pp. 37–44. Universität Duisburg, Essen (2010)Google Scholar
  5. 5.
    Batory, D.: Feature Models, Grammars and Propositional Formulas. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-checking approach for the analysis of communication protocols for service-oriented applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 133–148. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-checking approach for the analysis of abstract system properties. Sci. Comput. Program. (to appear 2010)Google Scholar
  8. 8.
    Castro, P.F., Maibaum, T.S.E.: A Complete and Compact Propositional Deontic Logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 109–123. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Castro, P.F., Maibaum, T.S.E.: A Tableaux System for Deontic Action Logic. In: van der Meyden, R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 34–48. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite State Concurrent Systems using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)CrossRefMATHGoogle Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT, Cambridge (1999)Google Scholar
  12. 12.
    Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model Checking Lots of Systems: Efficient Verification of Temporal Properties in Software Product Lines. In: Proceedings 32nd ACM/IEEE International Conference on Software Engineering, vol. 1, pp. 335–344. ACM, New York (2010)Google Scholar
  13. 13.
    Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applications. Addison-Wesley, Boston (2000)Google Scholar
  14. 14.
    De Nicola, R., Vaandrager, F.W.: Three Logics for Branching Bisimulation. J. ACM 42(2), 458–487 (1995)MathSciNetMATHGoogle Scholar
  15. 15.
    D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: The Modal Transition System Analyser. In: Proceedings 23rd IEEE/ACM International Conference on Automated Software Engineering, pp. 475–476. IEEE, Washington (2008)Google Scholar
  16. 16.
    Fantechi, A., Gnesi, S.: A Behavioural Model for Product Families. In: Crnkovic, I., Bertolino, A. (eds.) Proceedings 6th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT symposium on Foundations of Software Engineering, pp. 521–524. ACM, New York (2007)Google Scholar
  17. 17.
    Fantechi, A., Gnesi, S.: Formal modelling for Product Families Engineering. In: Proceedings 12th International Software Product Line Conference, pp. 193–202. IEEE, Washington (2008)Google Scholar
  18. 18.
    Fantechi, A., Gnesi, S., Lami, G., Nesti, E.: A Methodology for the Derivation and Verification of Use Cases for Product Lines. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 255–265. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Fischbein, D., Uchitel, S., Braberman, V.A.: A Foundation for Behavioural Conformance in Software Product Line Architectures. In: Hierons, R.M., Muccini, H. (eds.) Proceedings ISSTA 2006 Workshop on Role of Software Architecture for Testing and Analysis, pp. 39–48. ACM, New York (2006)Google Scholar
  20. 20.
    Gruler, A., Leucker, M., Scheidemann, K.D.: Modelling and Model Checking Software Product Lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 113–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Gruler, A., Leucker, M., Scheidemann, K.D.: Calculating and Modelling Common Parts of Software Product Lines. In: Proceedings 12th International Software Product Line Conference, pp. 203–212. IEEE, Washington (2008)Google Scholar
  22. 22.
    Kang, K., Choen, S., Hess, J., Novak, W., Peterson, S.: Feature Oriented Domain Analysis (FODA) Feasibility Study. Technical Report SEI-90-TR-21, Carnegie Mellon University (1990)Google Scholar
  23. 23.
    Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  24. 24.
    Larsen, K.G.: Proof Systems for Satisfiability in Hennessy-Milner Logic with Recursion. Theor. Comput. Sci. 72(2-3), 265–288 (1990)MathSciNetMATHGoogle Scholar
  25. 25.
    Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: Proceedings 3rd Annual Symposium on Logic in Computer Science, pp. 203–210. IEEE, Washington (1988)Google Scholar
  27. 27.
    Mannion, M., Camara, J.: Theorem Proving for Product Line Model Verification. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 211–224. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Mazzanti, F.: UMC model checker v3.6 (2009), http://fmt.isti.cnr.it/umc
  29. 29.
    Meyer, J.-J.C., Wieringa, R.J. (eds.): Deontic Logic in Computer Science: Normative System Specification. John Wiley & Sons, Chichester (1994)Google Scholar
  30. 30.
    Meyer, M.H., Lehnerd, A.P.: The Power of Product Platforms: Building Value and Cost Leadership. The Free Press, New York (1997)Google Scholar
  31. 31.
    Müller-Olm, M., Schmidt, D.A., Steffen, B.: Model-Checking: A Tutorial Introduction. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer, Heidelberg (2005)CrossRefMATHGoogle Scholar
  33. 33.
    Schmidt, H., Fecher, H.: Comparing disjunctive modal transition systems with an one-selecting variant. J. Logic Algebraic Program. 77(1-2), 20–39 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Patrizia Asirelli
    • 1
  • Maurice H. ter Beek
    • 1
  • Alessandro Fantechi
    • 1
    • 2
  • Stefania Gnesi
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione ‘‘A. Faedo’’CNRPisaItaly
  2. 2.Dipartimento di Sistemi e InformaticaUniversità degli Studi di FirenzeItaly

Personalised recommendations