Automatic Verification of Parametric Specifications with Complex Topologies

  • Johannes Faber
  • Carsten Ihlemann
  • Swen Jacobs
  • Viorica Sofronie-Stokkermans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6396)


The focus of this paper is on reducing the complexity in verification by exploiting modularity at various levels: in specification, in verification, and structurally. For specifications, we use the modular language CSP-OZ-DC, which allows us to decouple verification tasks concerning data from those concerning durations. At the verification level, we exploit modularity in theorem proving for rich data structures and use this for invariant checking. At the structural level, we analyze possibilities for modular verification of systems consisting of various components which interact. We illustrate these ideas by automatically verifying safety properties of a case study from the European Train Control System standard, which extends previous examples by comprising a complex track topology with lists of track segments and trains with different routes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated parameterized verification of infinite-state processes with global conditions. Form. Method Syst. Des. 34(2), 126–156 (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 35–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Abrial, J.R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.) B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Bradley, A., Manna, Z., Sipma, H.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameterized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic verification of parametric specifications with complex topologies. Reports of SFB/TR 14 AVACS No. 66, SFB/TR 14 AVACS (2010),
  9. 9.
    Faber, J., Jacobs, S., Sofronie-Stokkermans, V.: Verifying CSP-OZ-DC specifications with complex data types and timing parameters. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 233–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Haxthausen, A.E., Peleska, J.: A domain-oriented, model-based approach for construction and verification of railway control systems. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 320–348. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Hoenicke, J.: Combination of Processes, Data, and Time. Ph.D. thesis, University of Oldenburg, Germany (2006)Google Scholar
  12. 12.
    Hoenicke, J., Olderog, E.R.: CSP-OZ-DC: A combination of specification techniques for processes, data and time. Nordic J. Comput. 9(4), 301–334 (2002)MathSciNetMATHGoogle Scholar
  13. 13.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Ihlemann, C., Sofronie-Stokkermans, V.: System description: H-PILoT. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 131–139. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchic reasoning in the verification of complex systems. ENTCS 174(8), 39–54 (2007)MATHGoogle Scholar
  16. 16.
    Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system verification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Mahony, B.P., Dong, J.S.: Blending Object-Z and timed CSP: An introduction to TCOZ. In: ICSE 1998, pp. 95–104 (1998)Google Scholar
  18. 18.
    McPeak, S., Necula, G.: Data structure specifications via local equality axioms. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration calculus: A practical approach. Form. Asp. Comput. 20(4-5), 481–505 (2008)CrossRefMATHGoogle Scholar
  20. 20.
    Möller, M., Olderog, E.R., Rasch, H., Wehrheim, H.: Integrating a formal method into a software engineering process with UML and Java. Form. Asp. Comput. 20, 161–204 (2008)CrossRefMATHGoogle Scholar
  21. 21.
    Platzer, A., Quesel, J.D.: European train control system: A case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model checking with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 245–259. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Sofronie-Stokkermans, V.: Sheaves and geometric logic and applications to modular verification of complex systems. ENTCS 230, 161–187 (2009)MATHGoogle Scholar
  25. 25.
    Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 171–187. Springer, Heidelberg (2010)Google Scholar
  26. 26.
    Woodcock, J.C.P., Cavalcanti, A.L.C.: A concurrent language for refinement. In: Butterfield, A., Strong, G., Pahl, C. (eds.) IWFM 2001. BCS Elec. Works. Comp. (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Johannes Faber
    • 1
  • Carsten Ihlemann
    • 2
  • Swen Jacobs
    • 3
  • Viorica Sofronie-Stokkermans
    • 2
  1. 1.Department of Computing ScienceUniversity of OldenburgGermany
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.École Polytechnique Fédérale de LausanneSwitzerland

Personalised recommendations