Constructors, Sufficient Completeness, and Deadlock Freedom of Rewrite Theories

  • Camilo Rocha
  • José Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6397)


Sufficient completeness has been throughly studied for equational specifications, where function symbols are classified into constructors and defined symbols. But what should sufficient completeness mean for a rewrite theory \(\mathcal{R} = (\Sigma,E,R)\) with equations E and non-equational rules R describing concurrent transitions in a system? This work argues that a rewrite theory naturally has two notions of constructor: the usual one for its equations E, and a different one for its rules R. The sufficient completeness of constructors for the rules R turns out to be intimately related with deadlock freedom, i.e., \(\mathcal{R}\) has no deadlocks outside the constructors for R. The relation between these two notions is studied in the setting of unconditional order-sorted rewrite theories. Sufficient conditions are given allowing the automatic checking of sufficient completeness, deadlock freedom, and other related properties, by propositional tree automata modulo equational axioms such as associativity, commutativity, and identity. They are used to extend the Maude Sufficient Completeness Checker from the checking of equational theories to that of both equational and rewrite theories. Finally, the usefulness of the proposed notion of constructors in proving inductive theorems about the reachability rewrite relation \(\rightarrow_\mathcal{R}\) associated to a rewrite theory \(\mathcal{R}\) (and also about the joinability relation \(\downarrow_\mathcal{R}\)) is both characterized and illustrated with an example.


Ground Term Tree Automaton Equational Logic Abstract Data Type Rewrite Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in equational theorem proving. Journal of Symbolic Computation 36(1-2), 217–233 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Kaci, A.H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewriting Techniques, vol. 2, pp. 1–30. Academic Press, New York (1989)Google Scholar
  3. 3.
    Becker, K.: Proving ground confluence and inductive validity in constructor based equational specifications. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 46–60. Springer, Heidelberg (1993) ISBN 3-540-56610-4Google Scholar
  4. 4.
    Bouhoula, A.: Using induction and rewriting to verify and complete parameterized specifications. Theoretical Computer Science 170(1-2), 245–276 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bouhoula, A.: Simultaneous checking of completeness and ground confluence for algebraic specifications. ACM Transactions on Computational Logic 10(3) (2009)Google Scholar
  6. 6.
    Bouhoula, A., Jacquemard, F.: Automated induction with constrained tree automata. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 539–554. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in membership equational logic. Theoretical Computer Science 236(1-2), 35–132 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theoretical Computer Science 360(1-3), 386–414 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.: Maude: specification and programming in rewriting logic. Theoretical Computer Science 285, 187–243 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Comon, H.: Sufficient completness, term rewriting systems and “anti-unification”. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 3–540. Springer, Heidelberg (1986), ISBN 3-540-16780-3CrossRefGoogle Scholar
  11. 11.
    Comon, H.: An effective method for handling initial algebras. In: Grabowski, J., Wechler, W., Lescanne, P. (eds.) ALP 1988. LNCS, vol. 343, pp. 108–118. Springer, Heidelberg (1989), ISBN 3-540-50667-5CrossRefGoogle Scholar
  12. 12.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007)Google Scholar
  13. 13.
    Comon, H., Jacquemard, F.: Ground reducibility is EXPTIME-complete. Information and Computation 187(1), 123–153 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gnaedig, I., Kirchner, H.: Computing constructor forms with non terminating rewrite programs. In: Bossi, A., Maher, M.J. (eds.) PPDP, pp. 121–132. ACM, New York (2006) ISBN 1-59593-388-3Google Scholar
  15. 15.
    Guttag, J.: The Specification and Application to Programming of Abstract Data Types. PhD thesis, University of Toronto, Computer Science Department (1975)Google Scholar
  16. 16.
    Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types. Acta Informatica 10, 27–52 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hendrix, J.: Decision Procedures for Equationally Based Reasoning. PhD thesis, University of Illinois at Urbana-Champaign (April 2008)Google Scholar
  18. 18.
    Hendrix, J., Clavel, M., Meseguer, J.: A sufficient completeness reasoning tool for partial specifications. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 165–174. Springer, Heidelberg (2005), ISBN 3-540-25596-6CrossRefGoogle Scholar
  19. 19.
    Hendrix, J., Meseguer, J.: On the completeness of context-sensitive order-sorted specifications. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 229–245. Springer, Heidelberg (2007), ISBN 978-3-540-73447-5CrossRefGoogle Scholar
  20. 20.
    Hendrix, J., Ohsaki, H., Viswanathan, M.: Propositional tree automata. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 50–65. Springer, Heidelberg (2006), ISBN 3-540-36834-5CrossRefGoogle Scholar
  21. 21.
    Huet, G.P., Hullot, J.-M.: Proofs by induction in equational theories with constructors. In: FOCS, pp. 96–107. IEEE, Los Alamitos (1980)Google Scholar
  22. 22.
    Jouannaud, J.-P., Kounalis, E.: Automatic proofs by induction in theories without constructors. Information and Computation 82(1), 1–33 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kapur, D., Narendran, P., Otto, F.: On ground-confluence of term rewriting systems. Information and Computation 86(1), 14–31 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kapur, D., Narendran, P., Rosenkrantz, D.J., Zhang, H.: Sufficient-completeness, ground-reducibility and their complexity. Acta Informatica 28(4), 311–350 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kapur, D., Narendran, P., Zhang, H.: On sufficient-completeness and related properties of term rewriting systems. Acta Informatica 24(4), 395–415 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kounalis, E.: Testing for the ground (co-)reducibility property in term-rewriting systems. Theoretical Computer Science 106(1), 87–117 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lazrek, A., Lescanne, P., Thiel, J.-J.: Tools for proving inductive equalities, relative completeness, and omega-completeness. Information and Computation 84(1), 47–70 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Martin, U., Nipkow, T.: Ordered rewriting and confluence. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 366–380. Springer, Heidelberg (1990), ISBN 3-540-52885-7CrossRefGoogle Scholar
  29. 29.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nipkow, T., Weikum, G.: A decidability result about sufficient-completeness of axiomatically specified abstract data types. In: Cremers, A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp. 257–268. Springer, Heidelberg (1982), ISBN 3-540-11973-6 CrossRefGoogle Scholar
  31. 31.
    Plaisted, D.: Semantic confluence tests and completion methods. Information and Control 65, 182–215 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rocha, C., Meseguer, J.: Constructors, sufficient completeness and deadlock freedom of generalized rewrite theories. Technical report, University of Illinois at Urbana-Champaign (2010)Google Scholar
  33. 33.
    Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285, 487–517 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Camilo Rocha
    • 1
  • José Meseguer
    • 1
  1. 1.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations