Advertisement

Labelled Unit Superposition Calculi for Instantiation-Based Reasoning

  • Konstantin Korovin
  • Christoph Sticksel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6397)

Abstract

The Inst-Gen-Eq method is an instantiation-based calculus which is complete for first-order clause logic modulo equality. Its distinctive feature is that it combines first-order reasoning with efficient ground satisfiability checking which is delegated in a modular way to any state-of-the-art ground SMT solver. The first-order reasoning modulo equality employs a superposition-style calculus which generates the instances needed by the ground solver to refine a model of a ground abstraction or to witness unsatisfiability.

In this paper we present and compare different labelling mechanisms in the unit superposition calculus that facilitates finding the necessary instances. We demonstrate and evaluate how different label structures such as sets, AND/OR trees and OBDDs affect the interplay between the proof procedure and blocking mechanisms for redundancy elimination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgartner, P.: Logical Engineering with Instance-Based Methods. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 404–409. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P., Tinelli, C.: The Model Evolution Calculus with Equality. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 392–408. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Eiter, T., Faber, W., Traxler, P.: Testing Strong Equivalence of Datalog Programs - Implementation and Examples. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 437–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Ganzinger, H., Korovin, K.: Integrating Equational Reasoning into Instantiation-Based Theorem Proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ- Description Logic to Disjunctive Datalog Programs. In: KR 2004, pp. 152–162. AAAI Press, Menlo Park (2004)Google Scholar
  6. 6.
    Korovin, K.: Instantiation-Based Automated Reasoning: From Theory to Practice. In: Schmidt, R.A. (ed.) Automated Deduction – CADE-22. LNCS, vol. 5663, pp. 163–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Korovin, K., Sticksel, C.: iProver-eq – An Instantiation-based Theorem Prover with Equality. In: Giesl, J., Hähnle, R. (eds.) Automated Reasoning. LNCS, vol. 6173, pp. 196–202. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Letz, R., Stenz, G.: Integration of Equality Reasoning into the Disconnection Calculus. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 176–190. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    de Moura, L., Bjørner, N.: Deciding Effectively Propositional Logic Using DPLL and Substitution Sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 410–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier, Amsterdam (1999)Google Scholar
  11. 11.
    Pérez, J.A.N., Voronkov, A.: Encodings of Bounded LTL Model Checking in Effectively Propositional Logic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 346–361. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Konstantin Korovin
    • 1
  • Christoph Sticksel
    • 1
  1. 1.School of Computer ScienceThe University of ManchesterUK

Personalised recommendations