Partitioning SAT Instances for Distributed Solving

  • Antti E. J. Hyvärinen
  • Tommi Junttila
  • Ilkka Niemelä
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6397)


In this paper we study the problem of solving hard propositional satisfiability problem (SAT) instances in a computing grid or cloud, where run times and communication between parallel running computations are limited.We study analytically an approach where the instance is partitioned iteratively into a tree of subproblems and each node in the tree is solved in parallel.We present new methods for constructing partitions which combine clause learning and lookahead. The methods are incorporated into the iterative approach and its performance is demonstrated with an extensive comparison against the best sequential solvers in the SAT competition 2009 as well as against two efficient parallel solvers.


Partition Function Truth Assignment Heuristic Function Partition Tree Original Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Strategies for solving SAT in Grids by randomized search. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 125–140. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Information Processing Letters 47(4), 173–180 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Luby, M., Ertel, W.: Optimal parallelization of Las Vegas algorithms. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 463–474. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 275(5296), 51–54 (1997)CrossRefGoogle Scholar
  5. 5.
    Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1–2), 43–62 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Incorporating clause learning in grid-based randomized SAT solving. Journal on Satisfiability, Boolean Modeling and Computation 6, 223–244 (2009)zbMATHGoogle Scholar
  7. 7.
    Hamadi, Y., Jabbour, S., Saïs, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability, Boolean Modeling and Computation 6, 245–262 (2009)zbMATHGoogle Scholar
  8. 8.
    Speckenmeyer, E., Monien, B., Vornberger, O.: Superlinear speedup for parallel backtracking. In: Houstis, E.N., Polychronopoulos, C.D., Papatheodorou, T.S. (eds.) ICS 1987. LNCS, vol. 297, pp. 985–993. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  9. 9.
    Böhm, M., Speckenmeyer, E.: A fast parallel SAT-solver: Efficient workload balancing. Annals of Mathematics and Artificial Intelligence 17(4–3), 381–400 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhang, H., Bonacina, M., Hsiang, J.: PSATO: A distributed propositional prover and its application to quasigroup problems. Journal of Symbolic Computation 21(4), 543–560 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jurkowiak, B., Li, C., Utard, G.: A parallelization scheme based on work stealing for a class of SAT solvers. Journal of Automated Reasoning 34(1), 73–101 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Michel, L., See, A., van Hentenryck, P.: Parallelizing constraint programs transparently. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 514–528. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Chrabakh, W., Wolski, R.: GridSAT: a system for solving satisfiability problems using a computational grid. Parallel Computing 32(9), 660–687Google Scholar
  14. 14.
    Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning the search space of a randomized search. In: Serra, R. (ed.) AI*IA 2009. LNCS (LNAI), vol. 5883, pp. 243–252. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Segre, A.M., Forman, S.L., Resta, G., Wildenberg, A.: Nagging: A scalable fault-tolerant paradigm for distributed search. Artificial Intelligence 140(1/2), 71–106 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability checking with distributed dynamic learning. Parallel Computing 29(7), 969–994 (2003)CrossRefGoogle Scholar
  18. 18.
    Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 155–184. IOS Press, Amsterdam (2009)Google Scholar
  19. 19.
    Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: Implementing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Le Berre, D.: Exploiting the real power of unit propagation lookahead. In: Proc. SAT 2001. Electronic Notes in Discrete Mathematics, vol. 9, pp. 59–80. Elsevier, Amsterdam (2001)Google Scholar
  22. 22.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: Proc. ICCAD 2001, pp. 279–285. ACM, New York (2001)Google Scholar
  25. 25.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Giunchiglia, E., Maratea, M., Tacchella, A.: (In)Effectiveness of look-ahead techniques in a modern SAT solver. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 842–846. Springer, Heidelberg (2003)Google Scholar
  27. 27.
    Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. Technical Report 10/1, Institute for Formal Models and Verification, Johannes Kepler University (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Antti E. J. Hyvärinen
    • 1
  • Tommi Junttila
    • 1
  • Ilkka Niemelä
    • 1
  1. 1.Department of Information and Computer ScienceAalto UniversityAALTOFinland

Personalised recommendations