Characterising Probabilistic Processes Logically

(Extended Abstract)
  • Yuxin Deng
  • Rob van Glabbeek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6397)


In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.


Probabilistic Process Forward Simulation Modal Formula Probabilistic Simulation Logical Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandini, E., Segala, R.: Axiomatizations for Probabilistic Bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Christoff, I.: Testing equivalences and fully abstract models for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 126–140. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Cleaveland, R., Purushothaman Iyer, S., Narasimha, M.: Probabilistic temporal logics via the modal mu-calculus. Theoretical Computer Science 342(2-3), 316–350 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D’Argenio, P.R., Wolovick, N., Terraf, P.S., Celayes, P.: Nondeterministic Labeled Markov Processes: Bisimulations and Logical Characterization. In: Proc. QEST 2009, pp. 11–20. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  5. 5.
    Deng, Y., Du, W.: A Local Algorithm for Checking Probabilistic Bisimilarity. In: Proc. FCST 2009, pp. 401–407. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  6. 6.
    Deng, Y., van Glabbeek, R.J.: Characterising Probabilistic Processes Logically,, Full version of this paper
  7. 7.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising Testing Preorders for Finite Probabilistic Processes. Logical Methods in Computer Science 4(4), 4 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Testing Finitary Probabilistic Processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009 - Concurrency Theory. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C., Zhang, C.: Remarks on Testing Probabilistic Processes. ENTCS 172, 359–397 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. Theoretical Computer Science 373(1-2), 92–114 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisimulation for labelled Markov processes. In: Proc. LICS 1998, pp. 478–489. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  12. 12.
    Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proc. IFIP TC 2 Working Conference on Programming Concepts and Methods, pp. 443–458 (1990)Google Scholar
  13. 13.
    Hansson, H., Jonsson, B.: A Calculus for Communicating Systems with Time and Probabilities. In: Proc. RTSS 1990, pp. 278–287. IEEE Computer Society, Los Alamitos (1990)Google Scholar
  14. 14.
    Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32(1), 137–161 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Proc. LICS 1997, pp. 111–122. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  17. 17.
    Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: Proc. LICS 1991, pp. 266–277. Computer Society Press (1991)Google Scholar
  18. 18.
    Jonsson, B., Wang, Y.: Testing preorders for probabilistic processes can be characterized by simulations. Theoretical Computer Science 282(1), 33–51 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science 27, 333–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lowe, G.: Probabilistic and Prioritized Models of Timed CSP. Theoretical Computer Science 138, 315–352 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    McIver, A.K., Morgan, C.C.: An expectation-based model for probabilistic temporal logic. Technical Report PRG-TR-13-97, Oxford University Computing Laboratory (1997)Google Scholar
  23. 23.
    McIver, A.K., Morgan, C.C.: Results on the Quantitative Mu-Calculus. ACM Transactions on Computational Logic 8(1) (2007)Google Scholar
  24. 24.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  25. 25.
    Mislove, M.W., Ouaknine, J., Worrell, J.: Axioms for Probability and Non-determinism. ENTCS 96, 7–28 (2004)zbMATHGoogle Scholar
  26. 26.
    Müller-Olm, M.: Derivation of Characteristic Formulae. ENTCS 18, 159–170 (1998)MathSciNetGoogle Scholar
  27. 27.
    Parma, A., Segala, R.: Logical Characterizations of Bisimulations for Discrete Probabilistic Systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)CrossRefzbMATHGoogle Scholar
  29. 29.
    Ramakrishna, Y.S., Smolka, S.A.: Partial-order reduction in the weak modal mu-calculus. In: Mazurkiewicz, A., Winkowski, J. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 5–24. Springer, Heidelberg (1997)Google Scholar
  30. 30.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Technical Report MIT/LCS/TR-676, PhD thesis, MIT, Dept. of EECS (1995)Google Scholar
  31. 31.
    Segala, R., Lynch, N.A.: Probabilistic Simulations for Probabilistic Processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  32. 32.
    Steffen, B., Ingólfsdóttir, A.: Characteristic Formulae for Processes with Divergence. Information and Computation 110, 149–163 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its application. Pacific Journal of Mathematics 5(2), 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Tix, R., Keimel, K., Plotkin, G.D.: Semantic Domains for Combining Probability and Non-Determinism. ENTCS 129, 1–104 (2005)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Wang, Y., Larsen, K.G.: Testing Probabilistic and Nondeterministic Processes. In: Proc. IFIP TC6/WG6.1 PSTV’92, C-8, North-Holland, pp. 47–61 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yuxin Deng
    • 1
    • 2
  • Rob van Glabbeek
    • 3
    • 4
  1. 1.Dept. Comp. Sci. & Eng. and MOE-Microsoft Key Lab for Intell. Comp. & Syst.Shanghai Jiao Tong UniversityChina
  2. 2.State Key Lab of Comp. Sci., Inst. of SoftwareChinese Academy of SciencesChina
  3. 3.NICTAAustralia
  4. 4.University of New South WalesAustralia

Personalised recommendations