A Syntactical Approach to Qualitative Constraint Networks Merging

  • Jean-François Condotta
  • Souhila Kaci
  • Pierre Marquis
  • Nicolas Schwind
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6397)

Abstract

We address the problem of merging qualitative constraint networks (QCNs) representing agents local preferences or beliefs on the relative position of spatial or temporal entities. Two classes of merging operators which, given a set of input QCNs defined on the same qualitative formalism, return a set of qualitative configurations representing a global view of these QCNs, are pointed out. These operators are based on local distances and aggregation functions. In contrast to QCN merging operators recently proposed in the literature, they take account for each constraint from the input QCNs within the merging process. Doing so, inconsistent QCNs do not need to be discarded at start, hence agents reporting locally consistent, yet globally inconsistent pieces of information (due to limited rationality) can be taken into consideration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.-F.: An interval-based representation of temporal knowledge. In: Proc. of IJCAI 1981, pp. 221–226 (1981)Google Scholar
  2. 2.
    Balbiani, P., Condotta, J.-F., Fariñas del Cerro, L.: A new tractable subclass of the rectangle algebra. In: Proc. of IJCAI 1999, pp. 442–447 (1999)Google Scholar
  3. 3.
    Cadoli, M., Donini, F.M., Liberatore, P., Schaerf, M.: The size of a revised knowledge base. Artificial Intelligence 115(1), 25–64 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Condotta, J.-F., Kaci, S., Marquis, P., Schwind, N.: Merging qualitative constraint networks in a piecewise fashion. In: Proc. of ICTAI 2009, pp. 605–608 (2009)Google Scholar
  5. 5.
    Condotta, J.-F., Kaci, S., Marquis, P., Schwind, N.: Merging qualitative constraints networks using propositional logic. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 347–358. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Condotta, J.-F., Kaci, S., Schwind, N.: A Framework for Merging Qualitative Constraints Networks. In: Proc. of FLAIRS 2008, pp. 586–591 (2008)Google Scholar
  7. 7.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54(1), 199–227 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artificial Intelligence 137(1-2), 1–42 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kaci, S., Piette, C.: Looking for the best and the worst. In: Colloque sur l’Optimisation et les Systèmes d’Information, COSI (2009)Google Scholar
  10. 10.
    Konieczny, S.: On the difference between merging knowledge bases and combining them. In: Proc. of KR 2000, pp. 135–144 (2000)Google Scholar
  11. 11.
    Konieczny, S., Lang, J., Marquis, P.: Distance-based merging: a general framework and some complexity results. In: Proc. of KR 2002, pp. 97–108 (2002)Google Scholar
  12. 12.
    Konieczny, S., Lang, J., Marquis, P.: DA 2 merging operators. Artificial Intelligence 157(1-2), 49–79 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Konieczny, S., Pino Pérez, R.: On the logic of merging. In: Proc. of KR 1998, pp. 488–498 (1998)Google Scholar
  14. 14.
    Konieczny, S., Pino Prez, R.: Merging information under constraints: a logical framework. Journal of Logic and Computation 12(5), 773–808 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Computing 9(1), 23–44 (1998)CrossRefGoogle Scholar
  16. 16.
    Ligozat, G., Renz, J.: What Is a Qualitative Calculus? A General Framework. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 53–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Lin, J.: Integration of weighted knowledge bases. Artificial Intelligence 83(2), 363–378 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Marichal, J.-L.: Aggregation Operators for Multicriteria Decision Aid. PhD thesis, Institute of Mathematics, University of Liège, Liège, Belgium (1998)Google Scholar
  19. 19.
    Randell, D.-A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Proc. of KR 1992, pp. 165–176 (1992)Google Scholar
  20. 20.
    Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 65–74. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Revesz, P.Z.: On the Semantics of Arbitration. Journal of Algebra and Computation 7(2), 133–160 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Saminger-Platz, S., Mesiar, R., Dubois, D.: Aggregation operators and commuting. IEEE T. Fuzzy Systems 15(6), 1032–1045 (2007)CrossRefGoogle Scholar
  23. 23.
    Thau, D., Bowers, S., Ludäscher, B.: Merging taxonomies under RCC-5 algebraic articulations. In: Proc. of ONISW 2008, pp. 47–54 (2008)Google Scholar
  24. 24.
    van Beek, P.: Reasoning about qualitative temporal information. In: Proc. of AAAI 1990, pp. 728–734 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jean-François Condotta
    • 1
  • Souhila Kaci
    • 1
  • Pierre Marquis
    • 1
  • Nicolas Schwind
    • 1
  1. 1.Université Lille-Nord de France, Artois, F-62307 Lens, CRIL, F-62307 Lens, CNRS UMR 8188

Personalised recommendations