Magically Constraining the Inverse Method Using Dynamic Polarity Assignment

  • Kaustuv Chaudhuri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6397)


Given a logic program that is terminating and mode-correct in an idealised Prolog interpreter (i.e., in a top-down logic programming engine), a bottom-up logic programming engine can be used to compute exactly the same set of answers as the top-down engine for a given mode-correct query by rewriting the program and the query using the Magic Sets Transformation (MST). In previous work, we have shown that focusing can logically characterise the standard notion of bottom-up logic programming if atomic formulas are statically given a certain polarity assignment. In an analogous manner, dynamically assigning polarities can characterise the effect of MST without needing to transform the program or the query. This gives us a new proof of the completeness of MST in purely logical terms, by using the general completeness theorem for focusing. As the dynamic assignment is done in a general logic, the essence of MST can potentially be generalised to larger fragments of logic.


Logic Program Inference Rule Logic Programming Inverse Method Atomic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and Computation 2(3), 297–347 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Apt, K.R., Marchiori, E.: Reasoning about prolog programs from modes through types to assertions. Formal Aspects of Computing 6(A), 743–764 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beeri, C., Ramakrishnan, R.: On the power of magic. J. of Logic Programming 10(1/2/3&4), 255–299 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon University, Technical report CMU-CS-06-162 (2006)Google Scholar
  5. 5.
    Chaudhuri, K.: Focusing strategies in the sequent calculus of synthetic connectives. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 467–481. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Chaudhuri, K.: Classical and intuitionistic subexponential logics are equally expressive. In: Veith, H. (ed.) CSL 2010. LNCS, vol. 6247, pp. 185–199. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-order linear logic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 69–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward chaining in the inverse method. J. of Automated Reasoning 40(2-3), 133–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Handbook of Automated Reasoning, pp. 179–272. Elsevier and MIT Press (2001)Google Scholar
  10. 10.
    Donnelly, K., Gibson, T., Krishnaswami, N., Magill, S., Park, S.: The inverse method for the logic of bunched implications. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 466–480. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Heilala, S., Pientka, B.: Bidirectional decision procedures for the intuitionistic propositional modal logic IS4. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 116–131. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Howe, J.M.: Proof Search Issues in Some Non-Classical Logics. PhD thesis, U. of St Andrews, Research Report CS/99/1 (1998)Google Scholar
  13. 13.
    Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical Computer Science 410(46), 4747–4768 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liang, C., Miller, D.: A unified sequent calculus for focused proofs. In: LICS 24, pp. 355–364 (2009)Google Scholar
  15. 15.
    Mascellani, P., Pedreschi, D.: The declarative side of magic. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 83–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    McLaughlin, S., Pfenning, F.: Imogen: Focusing the polarized focused inverse method for intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Miller, D., Nigam, V.: Incorporating tables into proofs. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 466–480. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focalization in linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 405–419. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Ullman, J.D.: Principles of Database and Knowledge-base Systems, Volume II: The New Techniques. In: Principles of Computer Science. Computer Science Press, Rockville (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kaustuv Chaudhuri
    • 1
  1. 1.INRIA SaclayFrance

Personalised recommendations