Natural deduction for intuitionistic linear logic is known to be full of non-deterministic choices. In order to control these choices, we combine ideas from intercalation and focusing to arrive at the calculus of focused natural deduction. The calculus is shown to be sound and complete with respect to first-order intuitionistic linear natural deduction and the backward linear focusing calculus.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreoli, J.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2(3), 297 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chaudhuri, K.: Focusing strategies in the sequent calculus of synthetic connectives. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 467–481. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing. In: Fifth International Conference on Theoretical Computer Science, vol. 273, pp. 383–396. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward chaining in the inverse method. Journal of Automated Reasoning 40(2), 133–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Krishnaswami, N.R.: Focusing on pattern matching. In: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 366–378. ACM, New York (2009)Google Scholar
  6. 6.
    Licata, D.R., Zeilberger, N., Harper, R.: Focusing on binding and computation. In: LICS, pp. 241–252. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  7. 7.
    McLaughlin, S., Pfenning, F.: Efficient intuitionistic theorem proving with the polarized inverse method. In: Proceedings of the 22nd International Conference on Automated Deduction, p. 244. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Logic 51(1-2), 125–157 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Prawitz, D.: Natural Deduction. Almquist & Wiksell, Stockholm (1965)Google Scholar
  10. 10.
    Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic). Studia Logica 60(1), 67–106 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework: The propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Zeilberger, N.: Focusing and higher-order abstract syntax. In: Necula, G.C., Wadler, P. (eds.) POPL, pp. 359–369. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Taus Brock-Nannestad
    • 1
  • Carsten Schürmann
    • 1
  1. 1.IT University of CopenhagenDenmark

Personalised recommendations