Characterising Space Complexity Classes via Knuth-Bendix Orders

  • Guillaume Bonfante
  • Georg Moser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6397)

Abstract

We study three different space complexity classes: LINSPACE, PSPACE, and ESPACE and give complete characterisations for these classes. We employ rewrite systems, whose termination can be shown by Knuth Bendix orders. To capture LINSPACE, we consider positively weighted Knuth Bendix orders. To capture PSPACE, we consider unary rewrite systems, compatible with a Knuth Bendix order, where we allow for padding of the input. And to capture ESPACE, we make use of a non-standard generalisation of the Knuth Bendix order.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avanzini, M., Moser, G.: Complexity Analysis by Rewriting. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 130–146. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Avanzini, M., Moser, G.: Dependency pairs and polynomial path orders. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 48–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefMATHGoogle Scholar
  4. 4.
    Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. JFP 11(1), 33–53 (2001)MathSciNetMATHGoogle Scholar
  5. 5.
    Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-interpretations and small space bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 150–164. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hofbauer, D.: Termination Proofs and Derivation Lengths in Term Rewriting Systems. Ph.D. thesis, Technische Universität Berlin (1992)Google Scholar
  7. 7.
    Hofbauer, D.: Termination proofs with multiset path orderings imply primitive recursive derivation lengths. TCS 105(1), 129–140 (1992)CrossRefMATHGoogle Scholar
  8. 8.
    Hofbauer, D., Lautemann, C.: Termination Proofs and the Length of Derivation. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  9. 9.
    Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational problems in abstract algebra. Pergamon, Oxford (1970)Google Scholar
  10. 10.
    Koprowski, A., Waldmann, J.: Arctic Termination ...Below Zero. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Kozen, D.: Theory of Computation. Springer, Heidelberg (2006)MATHGoogle Scholar
  12. 12.
    Lepper, I.: Derivation lengths and order types of Knuth-Bendix orders. TCS 269, 433–450 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Marion, J.Y.: Analysing the Implicit Complexity of Programs. IC 183, 2–18 (2003)MathSciNetMATHGoogle Scholar
  14. 14.
    Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 75–89. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Moser, G., Schnabl, A.: The Derivational Complexity Induced by the Dependency Pair Method. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 255–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Moser, G., Schnabl, A., Waldmann, J.: Complexity Analysis of Term Rewriting Based on Matrix and Context Dependent Interpretations. In: Proc. of 28th FSTTICS, pp. 304–315. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)Google Scholar
  17. 17.
    TeReSe: Term Rewriting Systems, Cambridge Tracks in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)Google Scholar
  18. 18.
    Weiermann, A.: Termination proofs by lexicographic path orderings yield multiply recursive derivation lengths. Theoretical Computer Science 139(1), 355–362 (1995)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guillaume Bonfante
    • 1
  • Georg Moser
    • 2
  1. 1.INRIA-LORIANancyFrance
  2. 2.Institute of Computer ScienceUniversity of InnsbruckAustria

Personalised recommendations