Computational Algorithm for Some Problems with Variable Geometrical Structure

  • N. Bessonov
  • V. Volpert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6260)

Abstract

The work is devoted to the computational algorithm for a problem of plant growth. The plant is represented as a system of connected intervals corresponding to branches. We compute the concentration distributions inside the branches. The originality of the problem is that the geometry of the plant is not a priori given. It evolves in time depending on the concentrations of plant hormones found as a solution of the problem. New branches appear in the process of plant growth. The algorithm is adapted to an arbitrary plant structure and an arbitrary number of branches.

Keywords

Plants branching variable structure computational algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krug, H., Liebig, H.-P.: International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation. ISHS Acta Horticulturae, vol. 248 (1989)Google Scholar
  2. 2.
    Godin, C., et al.: 4th International Workshop on Functional-Structural Plant Models. Publication UMR AMAP (2004)Google Scholar
  3. 3.
    Bessonov, N., Volpert, V.: Dynamic Models of Plant Growth. Publibook, Paris (2006)Google Scholar
  4. 4.
    Bessonov, N., Morozova, N., Volpert, V.: Branching Pattern in Plants. Bull. Math. Biology 70(3), 868–893 (2008)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., Meyerowitz, E.M.: Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology 15, 1899–1911 (2005)CrossRefGoogle Scholar
  6. 6.
    Treml, B.S., Winderl, S., Radykewicz, R., Herz, M., Schweizer, G., Hutzler, P., Glawischnig, E., Ruiz, R.A.: The Gene ENHANCER OF PINOID Controls Cotyledon Development in the Arabidopsis Embryo. Development 139(18), 4063–4074 (2005)CrossRefGoogle Scholar
  7. 7.
    Reinhardt, D.: Regulation of Phyllotaxis. Int. J. Dev. Biol. 49, 539–546 (2005)CrossRefGoogle Scholar
  8. 8.
    Smith, R.S., Guyomarc’h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., Prusinkiewicz, P.: A Plausible Model of Phyllotaxis. PNAS 103(5), 1301–1306 (2006)CrossRefGoogle Scholar
  9. 9.
    Jonsson, H., Heisler, M.G., Shapiro, B.E., Meyerowitz, E.M., Mjolsness, E.: An Auxin-Driven Polarized Transport Model for Phyllotaxis. PNAS 103(5), 1633–1638 (2006)CrossRefGoogle Scholar
  10. 10.
    Fleming, A.J.: Formation of Primordia and Phyllotaxy. Current Opinion in Plant Biology 8, 53–58 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Reinhardt, D., Mandel, T., Kuhlemeier, C.: Auxin Regulates the Initiation and Radial Position of Plant Lateral Organs. Plant Cell 12, 507–518 (2000)CrossRefGoogle Scholar
  12. 12.
    Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C.: Regulation of Phyllotaxis by Polar Auxin Transport. Nature 462, 255–260 (2003)CrossRefGoogle Scholar
  13. 13.
    Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., Scheres, B.: The PIN Auxin Efflux Facilitator Network Controls Growth and Patterning in Arabidopsis Roots. Nature 433, 39–44 (2005)CrossRefGoogle Scholar
  14. 14.
    Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P., Traas, J.: PIN-FORMED 1 Regulates Cell Fate at the Periphery of the Shoot Apical Meristem. Development 127, 5157–5165 (2000)Google Scholar
  15. 15.
    Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., Palme, K.: Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue. Science 282, 2226–2230 (1998)CrossRefGoogle Scholar
  16. 16.
    Aida, M., Vernoux, T., Furutani, M., Traas, J., Tasaka, M.: Roles of PIN-FORMED1 and MONOPTEROS in Pattern Formation of the Apical Region of the Arabidopsis Embryo. Development 129, 3965–3974 (2002)Google Scholar
  17. 17.
    Stieger, P.A., Reinhardt, D., Kuhlemeier, C.: The Auxin Influx Carrier is Essential for Correct Leaf Positioning. Plant J. 32, 509–517 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • N. Bessonov
    • 1
  • V. Volpert
    • 2
  1. 1.Institute of Mechanical Engineering ProblemsSaint PetersburgRussia
  2. 2.Institut Camille JordanUMR 5208 CNRS, University Lyon 1VilleurbanneFrance

Personalised recommendations