Advertisement

Special-relativistic Smoothed Particle Hydrodynamics: a benchmark suite

  • Stephan RosswogEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 79)

Summary

In this paper we test a special-relativistic formulation of Smoothed Particle Hydrodynamics (SPH) that has been derived from the Lagrangian of an ideal fluid. Apart from its symmetry in the particle indices, the new formulation differs from earlier approaches in its artificial viscosity and in the use of specialrelativistic “grad-h-terms”. In this paper we benchmark the scheme in a number of demanding test problems. Maybe not too surprising for such a Lagrangian scheme, it performs close to perfectly in pure advection tests. What is more, the method produces accurate results even in highly relativistic shock problems.

Key words

Smoothed Particle Hydrodynamics special relativity hydrodynamics shocks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ayal, T. Piran, R. Oechslin, M. B. Davies, and S. Rosswog, Post-Newtonian Smoothed Particle Hydrodynamics, ApJ 550 (2001), 846–859.CrossRefGoogle Scholar
  2. 2.
    T. W. Baumgarte and S. L. Shapiro, Numerical Relativity and Compact Binaries, Phys. Rep. 376 (2003), 41–131.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Bauswein, R. Oechslin, and H. -J. Janka, Discriminating Strange Star Mergers from Neutron Star Mergers by Gravitational-Wave Measurements, ArXiv e-prints (2009).Google Scholar
  4. 4.
    J. E. Chow and J.J. Monaghan, Ultrarelativistic SPH, J. Computat. Phys. 134 (1997), 296.zbMATHCrossRefGoogle Scholar
  5. 5.
    L. Del Zanna and N. Bucciantini, An Efficient Shock-capturing Central-type Scheme for Multidimensional Relativistic Flows. I. Hydrodynamics, A&A 390 (2002), 1177–1186.zbMATHCrossRefGoogle Scholar
  6. 6.
    A. Dolezal and S. S. M. Wong, Relativistic Hydrodynamics and Essentially Nonoscillatory Shock Capturing Schemes, J. Comp. Phys. 120 (1995), 266.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Einfeldt, P. L. Roe, C. D. Munz, and B. Sjogreen, On Godunov-type Methods Near Low Densities, J. Comput. Phys. 92 (1991), 273–295.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. A. Faber, T. W. Baumgarte, S. L. Shapiro, K. Taniguchi, and F. A. Rasio, Dynamical Evolution of Black Hole-Neutron Star Binaries in General Relativity: Simulations of Tidal Disruption, Phys. Rev. D 73 (2006), no. 2, 024012.CrossRefGoogle Scholar
  9. 9.
    J. A. Faber, P. Grandclément, and F. A. Rasio, Mergers of Irrotational Neutron Star Binaries in Conformally Flat Gravity, Phys. Rev. D 69 (2004), no. 12, 124036.CrossRefGoogle Scholar
  10. 10.
    J. A. Faber and F. A. Rasio, Post-Newtonian SPH Calculations of Binary Neutron Star Coalescence: Method and First Results, Phys. Rev. D 62 (2000), no. 6, 064012.CrossRefGoogle Scholar
  11. 11.
    J. A. Faber and F. A. Rasio, Post-Newtonian SPH Calculations of Binary Neutron Ntar Coalescence. III. Irrotational Systems and Gravitational Wave Spectra, Phys. Rev. D 65 (2002), no. 8, 084042.CrossRefGoogle Scholar
  12. 12.
    J. A. Faber, F. A. Rasio, and J. B. Manor, Post-Newtonian Smoothed Particle Hydrodynamics Calculations of Binary Neutron Star Coalescence. II. Binary Mass Ratio, Equation of State, and Spin Dependence, Phys. Rev. D 63 (2001), no. 4, 044012.CrossRefGoogle Scholar
  13. 13.
    V. Fock, Theory of Space, Time and Gravitation, Pergamon, Oxford, 1964.Google Scholar
  14. 14.
    J. Font, Numerical Hydrodynamics in General Relativity, Living Rev. Relativ. 3 (2000), 2.MathSciNetGoogle Scholar
  15. 15.
    J. F. Hawley, L. L. Smarr, and J. R. Wilson, A Numerical Study of Nonspherical Black Hole Accretion. II - Finite Differencing and Code Calibration, ApJS 55 (1984), 211–246.CrossRefGoogle Scholar
  16. 16.
    A. Kheyfets, W. A. Miller, and W. H. Zurek, Covariant Smoothed Particle Hydrodynamics on a Curved Background, Phys. Rev. D 41 (1990), 451–454.CrossRefGoogle Scholar
  17. 17.
    P. Laguna, W. A. Miller, and W. H. Zurek, Smoothed Particle Hydrodynamics Near a Black Hole, ApJ 404 (1993), 678–685.CrossRefGoogle Scholar
  18. 18.
    P.J. Mann, A Relativistic Smoothed Particle Hydrodynamics Method Tested with the Shock Tube, Comp. Phys. Commun. (1991).Google Scholar
  19. 19.
    P.J. Mann, Smoothed Particle Hydrodynamics Applied to Relativistic Spherical Collapse, J. Comput. Phys. 107 (1993), 188–198.zbMATHCrossRefGoogle Scholar
  20. 20.
    J. M. Marti and E. Müller, Numerical Hydrodynamics in Special Relativity, Living Rev. Relativ. 6 (2003), 7.Google Scholar
  21. 21.
    J.M. Marti and E. Müller, Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics, J. Comp. Phys. 123 (1996), 1.zbMATHCrossRefGoogle Scholar
  22. 22.
    J. J. Monaghan, Smoothed Particle Hydrodynamics, Ann. Rev. Astron. Astrophys. 30 (1992), 543.CrossRefGoogle Scholar
  23. 23.
    J. J. Monaghan, SPH Compressible Turbulence, MNRAS 335 (2002), 843–852.CrossRefGoogle Scholar
  24. 24.
    J. J. Monaghan, Smoothed Particle Hydrodynamics, Rep. Prog. Phys. 68 (2005), 1703–1759.CrossRefMathSciNetGoogle Scholar
  25. 25.
    J. J. Monaghan and D. J. Price, Variational Principles for Relativistic Smoothed Particle Hydrodynamics, MNRAS 328 (2001), 381–392.CrossRefGoogle Scholar
  26. 26.
    R. Oechslin, S. Rosswog, and F.-K. Thielemann, Conformally Flat Smoothed Particle Hydrodynamics Application to Neutron Star Mergers, Phys. Rev. D 65 (2002), no. 10, 103005.CrossRefGoogle Scholar
  27. 27.
    S. Rosswog, Astrophysical Smooth Particle Hydrodynamics, New Astron. Rev. 53 (2009), 78.CrossRefGoogle Scholar
  28. 28.
    S. Rosswog, Conservative, Special-relativistic Smooth Particle Hydrodynamics, submitted to J. Comp. Phys. (2009), eprint arXiv:0907.4890.Google Scholar
  29. 29.
    S. Rosswog, Relativistic Smooth Particle Hydrodynamics on a Given Background Space-time, Classical Quantum Gravity, in press (2010).Google Scholar
  30. 30.
    S. Siegler, Entwicklung und Untersuchung eines Smoothed Particle Hydrodynamics Verfahrens für relativistische Strömungen, Ph.D. thesis, Eberhard-Karls-Universität Tübingen, 2000.Google Scholar
  31. 31.
    S. Siegler and H. Riffert, Smoothed Particle Hydrodynamics Simulations of Ultrarelativistic Shocks with Artificial Viscosity, ApJ 531 (2000), 1053–1066.CrossRefGoogle Scholar
  32. 32.
    V. Springel and L. Hernquist, Cosmological Smoothed Particle Hydrodynamics Simulations: the Entropy Equation, MNRAS 333 (2002), 649–664.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Jacobs University BremenBremenGermany

Personalised recommendations