Advertisement

Coupling of the Navier-Stokes and the Boltzmann equations with a meshfree particle and kinetic particle methods for a micro cavity

  • Sudarshan TiwariEmail author
  • Axel Klar
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 79)

Summary

We present a coupling procedure of a meshfree particle method to solve the Navier-Stokes equations and a kinetic particle method, a variant of the Direct Simulation Monte Carlo(DSMC) method, to solve the Boltzmann equation. A 2D micro cavity problem has been simulated for different Knudsen numbers. An adaptive domain decomposition approach has been implemented with the help of a continuum breakdown criterion. The solutions from the Navier-Stokes equations and the coupling algorithm are compared with the ones from the Boltzmann equation. Moreover, it is shown that for larger Knudsen numbers, where the Navier-Stokes equations fail to predict the correct flow behaviors, its stationary solutions are still good candidate to initialize a Boltzmann solver. The CPU time for the coupling code is upto 5 times faster than the CPU time for the code solving Boltzmann equation for the same accuracy of the solutions.

Key words

meshfree method DSMC micro fluidics coupling Boltzmann and Navier-Stokes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This work was supported by the German Research Foundation (DFG), KL 1105/17-1. We would like to thank the (DFG) for the financial support.

References

  1. 1.
    O. Aktas, N. R. Aluru, A Combibed Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters, J. Comput. Phys., 178 (2002) 342-372.CrossRefGoogle Scholar
  2. 2.
    H. Babovsky, A convergence proof for Nanbu’s Boltzmann simulation scheme, Eur. J. Mech., 8:41, 1989.Google Scholar
  3. 3.
    H. Babovsky, R. Illner, A convergence proof for Nanbu’s simulation method for the full Boltzmann equation. SIAM J. of Num. Anal., 26:45, 1989.Google Scholar
  4. 4.
    C. Bardos, F. Golse, D. Levermore, Fluid dynamic limits of kinetic equations. JSP 63 (1991) 323-344.MathSciNetGoogle Scholar
  5. 5.
    G. A. Bird, Molecular Gas Dynamics and Direct Simulation of Gas Flows, Oxford University Press, New York, 1994.Google Scholar
  6. 6.
    I. D. Boyd, G. Chen, C. V. Candler, Predicting failure of the continuum continuum fluid equations in transitional hypersonic flows, Phys. Fluids, 7 (1995) 210.Google Scholar
  7. 7.
    R. Caflish. The fluid dynamical limit of the nonlinear Boltzmann equation. CPAM, 33:651, 1980.Google Scholar
  8. 8.
    C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases. Springer, 1994.Google Scholar
  9. 9.
    S. Chen, Weinan E, Y. Liu, C.-W. Shu, A discontinuous Galerkin implementation of a domain decomposition method for kinetic hydrodynamic coupling multiscale problems in gas dynamics and device simulations. J. Comput. Phys., 225 (2007) 1314-1330.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. K. Chaniotis, D. Poulikakos, P. Koumoutsakos, Remeshed Smoothed Particle Hydrodynamics for the Simulation of Viscous and Heat Conducting Flows, J. Comput. Phys. 182 (2002) 67-90.zbMATHCrossRefGoogle Scholar
  11. 11.
    P. Degond, G. Dimarco, L. Mieussens, A moving interface method for dynamic kinetic-fluid coupling, J. Comput. Phys. 227 (2007) 1176-1208.CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Gad-el Hak, The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture, ASME J. Fluids Engs., 121(403), 5-33, 1999.CrossRefGoogle Scholar
  13. 13.
    R. A. Gingold, J. J. Monaghan, Smoothed Particle Hydrodynamics: theory and application to non-spherical stars, Mon. Not. Roy. Astron. Soc. 181 (1977) 375-389.zbMATHGoogle Scholar
  14. 14.
    A. L. Gracia, B. J. Alder, Generation of the Chapmann-Enskog Distribution, J. Comput. Phys. 140 (1998) 66-70.CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. L. Gracia, J. B. Bell, W. Y. Crutchfield, B. J. Adler, Adaptive mesh and algorithm refinement using direct simulation Monte Carlo, J. Comput. Phys., 154 (1999) 134.CrossRefGoogle Scholar
  16. 16.
    A. Klar, Domain Decomposition for Kinetic Problems with Noneqilibrium States, Eur. J. Mech., B/Fluids, 15, 2, (1996) 203-216.zbMATHMathSciNetGoogle Scholar
  17. 17.
    V.I. Kolobov, R.R. Arslanbekov, V.V. Aristov, A.A. Frolova, S.A. Zabelok, Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement, J. Comput. Phys. 223 (2) (2007) 589-608.zbMATHCrossRefGoogle Scholar
  18. 18.
    P. Le Tallec, F. Mallinger, Coupling Boltzmann and Navier-Stokes equations by half fluxes, J. Comput. Phys. 136, (1997) 51-67.CrossRefMathSciNetGoogle Scholar
  19. 19.
    D. Levermore, W. J. Morokoff, B. T. Nadiga, Moment realizability and the validity of the Navier-Stokes equations for rarefied gas dynamics, Phys. Fluids 10 (12) (1998).Google Scholar
  20. 20.
    S. Mizzi, D. R. Emerson, S. K. Stefanov, R. W. Barber, J. M. Reese, Effects of Rarefaction on Cavity Flow in the slip regime, J. Comp. Theor. Nanoscience, Vol. 4, No. 4, 817-622, 2007.Google Scholar
  21. 21.
    H. Neunzert and J. Struckmeier, Particle methods for the Boltzmann equation. Acta Numerica, page 417, 1995.Google Scholar
  22. 22.
    S. Narris, D. Valougeorgis, The driven cavity flow over the whole range of the Knudsen number, Phys. of Fluids, 17, 097106, 2005.Google Scholar
  23. 23.
    Y. Sone, Molecular Gas Dynamics, Theory, Techniques and Applications, Birkhaueser, 2007.zbMATHCrossRefGoogle Scholar
  24. 24.
    J. Stoer and R. Bulirsch, Introduction to numerical analysis; Spring-Verlag, New York (1980)Google Scholar
  25. 25.
    Q. Sun, I. D. Boyd, G. V. Candler, A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows, J. Comput Phys. 194 (2004) 256-277.zbMATHCrossRefGoogle Scholar
  26. 26.
    J. C. Tannehill, T. L. Holst, J. V. Rakich, Numerical computation of twodimensional viscous blunt body flows with an impinging shock; AIAA Paper 75-0154, AIAA 13th Aerospace Sciences Meeting, 1975.Google Scholar
  27. 27.
    S. Tiwari, Coupling of the Boltzmann and Euler equations with automatic domain decomposition, J. Comput. Phys. 144 (1998) 710-726.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    S. Tiwari, A LSQ-SPH Approach for Solving Compressible Viscous Flows, International Serier of Numerical Mathematics, 141, Freistüler and Warnecke (Eds), Birkhäuser, 2001.Google Scholar
  29. 29.
    S. Tiwari, A. Klar, An adaptive domain decomposition procedure for Boltzmann and Euler equations, J. Comput. Appl. Math. 90, 233, 1998.CrossRefMathSciNetGoogle Scholar
  30. 30.
    S. Tiwari, A. Klar, S. Hardt, A particle-particle hybrid method for kinetic and continuum equations, J. Comput. Phys., 228, 7109-7124, 2009.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    S. Tiwari and J. Kuhnert, Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations, (M. Griebel and M. A. Schweitzer, eds.), Lecture Notes in Computational Science and Engineering, vol. 26, Springer, 2002, pp. 373–387.Google Scholar
  32. 32.
    S. Tiwari and J. Kuhnert, A numerical scheme for solving incompressible and low Mach number flows by Finite Pointset Method, (M. Griebel and M. A. Schweitzer, eds.), Lecture Notes in Computational Science and Engineering, vol. 43, Springer, 2005, pp. 191–206.Google Scholar
  33. 33.
    S. Tiwari et al, A Meshfree Method for Simulations of Interactions between Fluids and Flexible Structures, (M. Griebel and M. A. Schweitzer, eds.), Lecture Notes in Computational Science and Engineering, vol. 57, Springer, 2006, pp. 249–264.Google Scholar
  34. 34.
    S. Tiwari, S. Manservisi, Modeling Incompressible Navier-Stokes flows by least squares approximation. The Nepali Math. Sci. Report, Vol. 20, No. 1 &2, 2002.Google Scholar
  35. 35.
    H. S. Wijesinghe, N. G. Hadjiconstantinou, A discussion of hybrid atomisticcontinuum methods for multiscale hydrodynamics, Int. J. Multiscale Comput. Eng. 2 (2004) 189.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsTU KaiserslauternKaiserslauternGermany

Personalised recommendations