In this Chapter, several examples of applications of optimisation methods in the design of electrical devices are presented.

Section 1 is focused on the study of the torque ripple in a switched reluctance motor. The maximisation of the torque and minimisation of the torque ripple are the major objectives of the proposed procedure.


Particle Swarm Optimization Algorithm Equivalent Circuit Model Torque Ripple Genetic Algorithm Optimization Mobile Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ilea, D.: Modeling and optimization of an axial-flux switched reluctance motor, M.Sc. Thesis, Ecole Centrale de Lille, France (2008) (in French)Google Scholar
  2. 2.
    Krishnan, R.: Switched Reluctance Motor Drives - Modeling, Simulation, Analysis, Design and Applications, pp. 27–28. CRC Press, Boca Raton (2001)Google Scholar
  3. 3.
    Nakamura, K., Kimura, K., Ichinokura, O.: Electromagnetic and motion-coupled analysis for switched reluctance motor based on reluctance network analysis. Journal of Magnetism and Magnetic Materials 290, 1309–1312 (2005)CrossRefGoogle Scholar
  4. 4.
    Bae, H.-K.: Control of switched reluctance motors considering mutual inductance, PhD. Thesis, VirginiaTech, Blacksburg, pp.22-24 (2000)Google Scholar
  5. 5.
    Marroco, A.: Analyse numérique de problemés d’électrotechniques. Ann. Sc. Math., Quebec 1, 271–296 (1977)Google Scholar
  6. 6.
    Ayasun, S., Nwankpa, C.O.: Induction Motor Test Using Matlab/Simulink and Their Integration Into Undergraduate Electric Machinery Courses. IEEE Trans. On Education 48(1) (Feburary 2005)Google Scholar
  7. 7.
    Santana, F.J., Monzón, J.M., García–Alonso, S., Montiel–Nelson, J.A.: Analysis and Modeling of an Electrostatic Induction Micromotor. In: Proc. of the IEEE ICEM 2008, Villamoura, Portugal (September 2008)Google Scholar
  8. 8.
    Abdelhadi, B., Benoudjit, A., Nait–Said, N.: Application of Genetic Algorithm with a Novel Adaptive Scheme for the Identification of Induction Machine Parameters. IEEE Trans. On Energy Conversion 20(2) (June 2005)Google Scholar
  9. 9.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)Google Scholar
  10. 10.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992) ISBN 0 262 11170 5zbMATHGoogle Scholar
  11. 11.
    Scilab, Optimization Tools: Genetic Algorithms,,
  12. 12.
    Geuzaine, C., Remacle, J.F.: Gmsh: a Three–Dimensional Finite Element Mesh Generator with Built–in Pre–and Post–Processing Facilities. Int. J. for Numerical Methods in Engineering (May 2009)Google Scholar
  13. 13.
    Nicolet, A., Delincé, F.: Implicit Runge–Kutta Methods for Transient Magnetic Field Computation. IEEE Transactions on Magnetics 32(3) (1996)Google Scholar
  14. 14.
    Dular, P., Geuzaine, C., Henrotte, F., Legros, W.: A General Environment for the Treatment of Discrete Problems and its Application to the Finite Element Method. IEEE Transactions on Magnetics 34, 3395–3398 (1998)CrossRefGoogle Scholar
  15. 15.
    Herdem, S., Koksal, M.: A Fast Algorithm to Compute the Steady-State Solution of Nonlinear Circuits by Piecewise Linearization. Computers & Electrical Engineering 28(2), 91–101 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Elamraoui, L.: Conception électromécanique d’une gamme d’actionneurs linéaire tubulaire à reluctance variable, doctoral thèses of university Lille (December 2002)Google Scholar
  17. 17.
    Bastos, J.P.A.: Electromagnetic Modeling By Finite Element Methods. Marcel Dekker Inc., New York (2003) ISBN:0-8247-4269-9Google Scholar
  18. 18.
    Chong, E.K.P.: An introduction to optimization. Wiley-Interscience, Hoboken (2001) Sec Edit ISBN 0-471-39126-3zbMATHGoogle Scholar
  19. 19.
    Dlforge, C.: Modélisation d’une machine asynchrone par réseaux de perméances en vue de sa commande. J. Phys. III (December 1996)Google Scholar
  20. 20.
    Cundeva, M., Arsov, L., Cvetkovski, G.: Genetic Algorithm Coupled with FEM-3D for Metrological Optimal Design of Combined Current-Voltage Instrument Transformer. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 23(3), 670–676 (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Cundeva-Blajer, M., Cundeva, S., Arsov, L.: Nonlinear Electromagnetic Transient Analysis of SpecialGoogle Scholar
  22. 22.
    Cvetkovski, G., Petkovska, L., Cundev, M.: Hybrid Stochastic-Deterministic Optimal Design of Electrical Machines. In: Proc. of 11th Int. Symp. on Electromagnetic Fields in El. Eng. ISEF 2003, pp. 725–730 (2003)Google Scholar
  23. 23.
    IEC (International Electrotechnical Commission) 60044-2: Instrument transformers, Part 3: Combined transformers, Geneva (1980)Google Scholar
  24. 24.
    Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1995)Google Scholar
  25. 25.
    Ku, H., et al.: Design of a high SRM for spindle drive. In: 5th Int. Conf. Workshop CPE (2007)Google Scholar
  26. 26.
    Angle, T.L., et al.: A New Unique HP Pump System. In: Proc. 22nd Int. Pump Users Symposium (2005)Google Scholar
  27. 27.
    Geoffroy, M.: Etude de l’influence des paramètres géométriques du circuit magnétique sur les formes d’onde de perméances et de couple des machines cylindriques à reluctance variable à double saillance, Thèse Doctorat, Janvier 27 , Univ. Paris-Sud, France (1993)Google Scholar
  28. 28.
    Wichert, T., Ku, H.: Influence of modified rotor geometry on torque ripple and average torque of a 6/4 SRM. In: Proc. of XLII SME 2006, Cracow, Poland, July 3-6 (2006)Google Scholar
  29. 29.
    Deihimi, A., Farhangi, S.: A conceptual optimal design of switched reluctance motors under similar asynchronous motors constraints. In: Proc. of EPE 1999, Lausanne, Switzerland (1999)Google Scholar
  30. 30.
    Hoang, E., et al.: Influence of stator yoke thickness and stator teeth shape upon ripple and average torque of SRM. In: SPEEDAM, Taormina, Italy, June 8-10, pp. 145–149 (1994)Google Scholar
  31. 31.
    Le Chenadec, J.Y., et al.: Torque ripple minimisation in SRM by optimization of current wave-forms and of tooth shape with copper losses and V.A. silicon constraints. In: ICEM 1994, Paris, September 5-7, vol. 2, pp. 559–564 (1994)Google Scholar
  32. 32.
    Multon, B., et al.: Pole Arcs Optimization of Vernier Reluctance Motors Supplied with Square Wave Current. Electric Machines and Power Systems 21(6) (1993)Google Scholar
  33. 33.
    Bizkevelci, E., Ertan, H.B., Leblebicioglu, K.: Effects of control parameters on SRM. In: Proc. of ICEM 2007, Turkey, September 10-12 (2007)Google Scholar
  34. 34.
    Parreira, B., Rafael, S., Pires, A.J., Costa Branco, P.J.: Obtaining the magnetic characteristics of an 8/6 SRM: from FEM analysis to the experimental tests. IEEE Trans. on Ind. Electronics 52(6), 1635–1643 (2005)CrossRefGoogle Scholar
  35. 35.
    Lovatt, H.C.: Analytical model of a classical SRM. In: IEE Proc. Electr. Power Appl. (2004)Google Scholar
  36. 36.
    Bentounsi, A., et al.: Design and modeling of a doubly salient variable reluctance machine. In: ICEM 2008, Vilamoura, Portugal, September 6-9 (2008)Google Scholar
  37. 37.
    Lawrenson, P.J., et al.: Variable-Speed SRM. Proc. IEE 127(4), 253–265 (1980)Google Scholar
  38. 38.
    FEMM, finite elements software by D. Meeker free downloaded on WebGoogle Scholar
  39. 39.
    Krishnan, R.: SRM Drives : Modeling, Simulation, Analysis, Design & Applications, Industrial Electronics SeriesGoogle Scholar
  40. 40.
    Melor, P.H., Roberts, D., Turner, D.R.: Lumped parameter thermal model for electrical machines of TEFC design. IEE Proceedings-B 138, 205–218 (1991)Google Scholar
  41. 41.
    Saari, J.: Thermal Analysis of High-Speed Induction Machines, Acta Polytechnica Scandinavica, Espoo (1998), web address for guidance:
  42. 42.
    Kolondzovski, Z.: Determination of a critical thermal operation for high-speed permanent magnet electrical machines. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 27, 720–727 (2008)zbMATHCrossRefGoogle Scholar
  43. 43.
    Aglén, O., Anderson, Å.: Thermal analysis of a high-speed generator. In: Conference Record of the 38th IAS Annual Meeting, pp. 547–554 (2003)Google Scholar
  44. 44.
    Huai, Y., Melnik, R.V.N., Thogersen, P.B.: Computational analysis of temperature rise phenomena in electric induction motors. Applied Thermal Engineering 23, 779–795 (2003)CrossRefGoogle Scholar
  45. 45.
    Kuosa, M., Salinen, P., Larjola, J.: Numerical and experimental modeling of gas flow and heat transfer in the air gap of an electric machine. Journal of Thermal Science 13, 264–278 (2004)CrossRefGoogle Scholar
  46. 46.
    Kolondzovski, Z., Belahcen, A., Arkkio, A.: Multiphysics thermal design of a high-speed permanent-magnet machine. Applied Thermal Engineering 29, 2693–2700 (2009)CrossRefGoogle Scholar
  47. 47.
    Kolondzovski, Z., Belahcen, A., Arkkio, A.: Comparative thermal analysis of different rotor types for a high-speed permanent-magnet electrical machine. IET- Electric Power Applications 3, 279–288 (2009)CrossRefGoogle Scholar
  48. 48.
    Comsol Multiphysics, Heat Transfer Module, User’s Guide, Version 3.3 (2006)Google Scholar
  49. 49.
    Kolondzovski, Z.: Numerical modelling of the coolant flow in a high-speed electrical machine. In: XVIII International Conference on Electrical Machines ICEM 2008, p. 5 (2008)Google Scholar
  50. 50.
    Trigeol, J.F., Bertin, Y., Lagonotte, P.: Thermal modeling of an induction machine through the association of two numerical approaches. IEEE Transactions on Energy Conversion 21, 314–323 (2006)CrossRefGoogle Scholar
  51. 51.
    Minkowycz, W.J., Sparrow, E.M., Murthy, J.Y.: Handbook of Numerical Heat Transfer, 2nd edn. Wiley, New York (2006)Google Scholar
  52. 52.
    Arkkio, A.: Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations, Acta Polytechnica Scandinavica, Helsinki (1987), web address for guidance:
  53. 53.
    Saari, J.: Thermal modelling of high-speed induction machines. Acta Polytechnica Scandinavica, Helsinki (1995)Google Scholar
  54. 54.
    Hoole, S., Subramaniam, S., Saldanha, R., Coulomb, J.: Inverse Problem Methodology and Finite Elements in the Identification of Cracks, Sources, Materials, and their Geometry in Inaccessible Locations. IEEE Trans. Magn. 27, 3433–3443 (1991)CrossRefGoogle Scholar
  55. 55.
    Li, Y., Udpa, L., Udpa, S.S.: Three-Dimensional Defect Reconstruction From Eddy-Current NDE Signals Using a Genetic Local Search Algorithm. IEEE Trans. Magn. 40(2), 410–417 (2004)CrossRefGoogle Scholar
  56. 56.
    Rebican, M., Chen, Z., Yusa, N., Janousek, L., Miya, K.: Shape Reconstruction of Multiple Cracks From ECT Signals by Means of a Stochastic Method. IEEE Trans. Magn. 42(4), 1079–1082 (2006)CrossRefGoogle Scholar
  57. 57.
    Norton, S., Bowler, J.: Theory of ECT Inversion. J. Appl. Phys. 73, 501–512 (1993)CrossRefGoogle Scholar
  58. 58.
    Boeringer, D.W., Werner, D.H.: Particle Swarm Optimization Versus Genetic Algorithms for Phased Array Synthesis. IEEE Transactions on Antennas Propagation 52, 771–779 (2004)CrossRefGoogle Scholar
  59. 59.
    Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japon, pp. 39–43. IEEE Service Center, Piscataway (1995)CrossRefGoogle Scholar
  60. 60.
    Eberhart, R.C., Kennedy, J.: Particle Swarm Optimization. In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948. IEEE Service Center, Piscataway (1995)Google Scholar
  61. 61.
    Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proc. IEEE Congress on Evolutionary Computation, CEC 1998, Piscataway, NI, pp. 69–73 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Personalised recommendations