Time-Bounded Reachability in Distributed Input/Output Interactive Probabilistic Chains

  • Georgel Calin
  • Pepijn Crouzen
  • Pedro R. D’Argenio
  • E. Moritz Hahn
  • Lijun Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6349)


We develop an algorithm to compute timed reachability probabilities for distributed models which are both probabilistic and nondeterministic. To obtain realistic results we consider the recently introduced class of (strongly) distributed schedulers, for which no analysis techniques are known.

Our algorithm is based on reformulating the nondeterministic models as parametric ones, by interpreting scheduler decisions as parameters. We then apply the PARAM tool to extract the reachability probability as a polynomial function, which we optimize using nonlinear programming.


Distributed Systems Probabilistic Models Nondeterminism Time-Bounded Reachability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ault, L.H.: Das mastermind-handbuch. Ravensburger Buchverlag (1982)Google Scholar
  2. 2.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: FOSSACS 1995, pp. 499–513 (1995)Google Scholar
  3. 3.
    Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic fault trees in terms of interactive markov chains. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Calin, G., Crouzen, P., Hahn, E.M., D’Argenio, P., Zhang, L.: Time-bounded reachability in distributed input/output interactive probabilistic chains. Reports of SFB/TR 14 AVACS 64, SFB/TR 14 AVACS (June 2010)Google Scholar
  5. 5.
    Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC, pp. 460–469 (1988)Google Scholar
  6. 6.
    Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched probabilistic I/O automata. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 494–510. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Coste, N., Garavel, H., Hermanns, H., Hersemeule, R., Thonnart, Y., Zidouni, M.: Quantitative evaluation in embedded system design: validation of multiprocessor multithreaded architectures. In: DATE, pp. 88–89 (2008)Google Scholar
  9. 9.
    Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance prediction of compositional models in industrial GALS designs. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Daws, C.: Symbolic and parametric model checking of discrete-time markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    de Alfaro, L.: The verification of probabilistic systems under memoryless partial–information policies is hard. In: Proceedings of the Workshop on Probabilistic Methods in Verification (1999)Google Scholar
  12. 12.
    Georgievska, S., Andova, S.: Retaining the probabilities in probabilistic testing theory. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 79–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Gill, P., Murray, W., Wright, M.: Practical optimization. Academic Press, London (1981)zbMATHGoogle Scholar
  14. 14.
    Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Giro, S., D’Argenio, P.R.: On the expressive power of schedulers in distributed probabilistic systems. ENTCS 253(3), 45–71 (2009)Google Scholar
  16. 16.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A model checker for parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric markov models. In: STTT (2010)Google Scholar
  18. 18.
    Han, S.: A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications 22 (1977)Google Scholar
  19. 19.
    Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  20. 20.
    Lowe, G.: Representing nondeterministic and probabilistic behaviour in reactive processes. Technical Report PRG-TR-11-93, Oxford Univ. Comp. Labs (1993)Google Scholar
  21. 21.
    Morgan, C., McIver, A., Seidel, K., Massink, M.: Refinement-oriented probability for CSP. Formal Aspects of Computing 8, 617–647 (1996)CrossRefzbMATHGoogle Scholar
  22. 22.
    Segala, R.: Modeling and verification of randomized distributed real–time systems. PhD thesis, MIT (1995)Google Scholar
  23. 23.
    Zhang, L., Neuhäußer, M.R.: Model checking interactive markov chains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Georgel Calin
    • 1
  • Pepijn Crouzen
    • 1
  • Pedro R. D’Argenio
    • 2
  • E. Moritz Hahn
    • 1
  • Lijun Zhang
    • 3
  1. 1.Department of Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.FaMAFUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.DTU InformaticsTechnical University of DenmarkDenmark

Personalised recommendations