On the Virtue of Patience: Minimizing Büchi Automata

  • Rüdiger Ehlers
  • Bernd Finkbeiner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6349)


Explicit-state model checkers like SPIN, which verify systems against properties stated in linear-time temporal logic (LTL), rely on efficient LTL-to-Büchi translators. A difficult design decision in such constructions is to trade time spent on minimizing the Büchi automaton versus time spent on model checking against an unnecessarily large automaton. Standard reduction methods like simulation quotienting are fast but often miss optimization opportunities. We propose a new technique that achieves significant further reductions when more time can be invested in the minimization of the automaton. The additional effort is often justified, for example, when the properties are known in advance, or when the same property is used in multiple model checking runs. We use a modified SAT solver to perform bounded language inclusion checks on partial solutions. SAT solving allows us to prune large parts of the search space for smaller automata already in the early solving stages. The bound allows us to fine-tune the algorithm to run in limited time. Our experimental results show that, on standard LTL-to-Büchi benchmarks, our prototype implementation achieves a significant further size reduction on automata obtained by the best currently available LTL-to-Büchi translators.


Input Word Partial Valuation Parity Game Bisimulation Relation Safety Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  2. 2.
    Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories. In: [4], pp. 825–885Google Scholar
  3. 3.
    Berry, G., Comon, H., Finkel, A. (eds.): CAV 2001. LNCS, vol. 2102, pp. 233–242. Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  5. 5.
    Duret-Lutz, A., Poitrenaud, D.: Spot: An extensible model checking library using transition-based generalized büchi automata. In: DeGroot, D., Harrison, P.G., Wijshoff, H.A.G., Segall, Z. (eds.) MASCOTS, pp. 76–83. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  6. 6.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state verification. In: Ardis, M. (ed.) Proceedings of the 2nd Workshop on Formal Methods in Software Practice (FMSP 1998), pp. 7–15. ACM Press, New York (1998)CrossRefGoogle Scholar
  7. 7.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space reduction for büchi automata. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 694–707. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: [3], pp. 53–65Google Scholar
  11. 11.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) PSTV. IFIP Conference Proceedings, vol. 38, pp. 3–18. Chapman & Hall, Boca Raton (1995)Google Scholar
  12. 12.
    Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Holzmann, G.: The Spin model checker: primer and reference manual. Addison-Wesley Professional, Reading (2003)Google Scholar
  14. 14.
    Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Sakallah, K.A.: Symmetry and Satisfiability. In: [4], pp. 289–338Google Scholar
  16. 16.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rüdiger Ehlers
    • 1
  • Bernd Finkbeiner
    • 1
  1. 1.Reactive Systems GroupSaarland UniversityGermany

Personalised recommendations