An Initial Proposal for Data-Aware Resource Analysis of Orchestrations with Applications to Predictive Monitoring

  • Dragan Ivanović
  • Manuel Carro
  • Manuel Hermenegildo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6275)


Several activities in service oriented computing can benefit from knowing ahead of time future properties of a given service composition. In this paper we focus on how statically inferred computational cost functions on input data, which represent safe upper and lower bounds, can be used to predict some QoS-related values at runtime. In our approach, BPEL processes are translated into an intermediate language which is in turn converted into a logic program. Cost and resource analysis tools are applied to infer functions which, depending on the contents of some initial incoming message, return safe upper and lower bounds of some resource usage measure. Actual and predicted time characteristics are used to perform predictive monitoring. A validation is performed through simulation.


Service Orchestrations Resource Analysis Data-Awareness Monitoring 


  1. 1.
    Jordan, D., et al.: Web Services Business Process Execution Language Version 2.0. Technical report, IBM, Microsoft, et. al (2007)Google Scholar
  2. 2.
    Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Language for Service Behavior Modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 145–162. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Language. In: The Role of Business Processes in Service Oriented Architectures. Dagstuhl Seminar Proceedings, vol. 06291 (2006)Google Scholar
  4. 4.
    Mukherjee, D., Jalote, P., Nanda, M.G.: Determining QoS of WS-BPEL Compositions. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 378–393. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Wu, J., Yang, F.: A Model-Driven Approach for QoS Prediction of BPEL Processes. In: ICSOC Workshops, pp. 131–140 (2006)Google Scholar
  6. 6.
    Buccafurri, F., Meo, P.D., Fugini, M.G., Furnari, R., Goy, A., Lax, G., Lops, P., Modafferi, S., Pernici, B., Redavid, D., Semeraro, G., Ursino, D.: Analysis of QoS in Cooperative Services for Real Time Applications. Data Knowledge Engineering 67(3), 463–484 (2008)CrossRefGoogle Scholar
  7. 7.
    Fugini, M.G., Pernici, B., Ramoni, F.: Quality Analysis of Composed Services through Fault Injection. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 245–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Cardoso, J.: About the Data-Flow Complexity of Web Processes. In: 6th International Workshop on Business Process Modeling, Development, and Support: Business Processes and Support Systems: Design for Flexibility, pp. 67–74 (2005)Google Scholar
  9. 9.
    Cardoso, J.: Complexity analysis of BPEL web processes. Software Process: Improvement and Practice 12(1), 35–49 (2007)CrossRefGoogle Scholar
  10. 10.
    Debray, S.K., Lin, N.W.: Cost Analysis of Logic Programs. ACM Transactions on Programming Languages and Systems 15(5), 826–875 (1993)CrossRefGoogle Scholar
  11. 11.
    Canfora, G., Penta, M.D., Esposito, R., Villani, M.: An Approach for QoS-Aware Service Composition Based on Genetic Algorithms. In: Proceedings of the 2005 conference on Genetic and Evolutionary Computation, pp. 1069–1075. ACM, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  13. 13.
    Chen, Y.P., Li, Z.Z., Jin, Q.X., Wang, C.: Study on QoS Driven Web Services Composition. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 702–707. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Ivanović, D., Carro, M., Hermenegildo, M., López, P., Mera, E.: Towards Data-Aware Cost-Driven Adaptation for Service Orchestrations. Technical Report CLIP5/2009.1, Technical University of Madrid (UPM) (March 2010)Google Scholar
  15. 15.
    Navas, J., Mera, E., López-García, P., Hermenegildo, M.: User-Definable Resource Bounds Analysis for Logic Programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 348–363. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A Flexible (C)LP-Based Approach to the Analysis of Object-Oriented Programs. In: King, A. (ed.) LOPSTR 2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Morales, J., Puebla, G.: An Overview of The Ciao Multiparadigm Language and Program Development Environment and its Design Philosophy. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 209–237. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Hermenegildo, M., Puebla, G., Bueno, F., López-García, P.: Integrated Program Debugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor). Science of Computer Programming 58(1–2), 115–140 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dragan Ivanović
    • 1
  • Manuel Carro
    • 1
  • Manuel Hermenegildo
    • 1
    • 2
  1. 1.School of Computer ScienceT. University of Madrid (UPM)Spain
  2. 2.IMDEA SoftwareSpain

Personalised recommendations