Monitoring within an Autonomic Network: A GANA Based Network Monitoring Framework

  • Anastasios Zafeiropoulos
  • Athanassios Liakopoulos
  • Alan Davy
  • Ranganai Chaparadza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6275)


The concept of self-managing of autonomic networks is a paradigm shift from today’s management models, aiming at enabling networked nodes to self manage their behaviour within the constrains of the operator’s policies and objectives. In this article, we present our approach for self-coordinating monitoring functions within such an autonomic network. This approach complies with the principles of a recently introduced Reference Model for autonomic network engineering/self-management within node and network architectures dubbed: the Generic Autonomic Network Architecture (GANA), which aims to identify autonomic behaviours realised via hierarchical control loops among self-managing elements. The components of the proposed monitoring framework, the interactions among the identified elements and a complete use case scenario are described in detail.


Autonomic network engineering monitoring self-management GANA Hierarchical Control-Loops (HCLs) framework 


  1. 1.
    ITU-T, TMN Management Functions, Telecommunication Standardization sector of ITU, M.3400 (2000),
  2. 2.
    Chaparadza, R.: Requirements for a Generic Autonomic Network Architecture Suitable Requirements for Autonomic Behavior Specifications of Decision-Making-Elements for Diverse Networking Environments. In: International Engineering Consortium (IEC) Annual Review in Communications, vol. 61 (2008)Google Scholar
  3. 3.
    Greenberg, A., Hjalmtysson, G., Maltz, D.A., Myers, A., Rexford, J., Xie, G., Yan, H., Zhan, J., Zhang, H.: A Clean Slate 4D Approach to Network Control and Management. ACM SIGCOMM Computer Communication Review 35(5), 41–54 (2005)CrossRefGoogle Scholar
  4. 4.
    Ballani, H., Francis, P.: CONman: A Step Towards Network Manageability. ACM SIGCOMM Computer Communication Review 37(4), 205–216 (2007)CrossRefGoogle Scholar
  5. 5.
    Clark, D., Partridge, C., Ramming, J.C., Worclawski, J.T.: A Knowledge Plane for the Internet. In: Proc. of the 2003 conference on Applications, Technologies, Architectures and Protocols for Computer Communications, pp. 3–10 (2003)Google Scholar
  6. 6.
    Zafeiropoulos, A., Liakopoulos, A.: Context Awareness in Autonomic Heterogeneous Environments. In: INGRID 2009 (2009)Google Scholar
  7. 7.
    Jennings, B., Van der Mer, S., Balasubramanium, S., Botvich, D., Foghlú, M.O., Donnelly, W.: Towards autonomic management of communications networks. IEEE Communications Magazine 45(10), 112–121 (2007)CrossRefGoogle Scholar
  8. 8.
    Bullot, T., et al.: A Situatedness-based Knowledge Plane for Autonomic Networking. International Journal of Network Management 18(2), 171–193 (2008)CrossRefGoogle Scholar
  9. 9.
    IBM, Understanding the Autonomic Manager Concept,
  10. 10.
    Davy, A., et al.: Revenue Optimized IPTV Admission Control using Empirical Effective Bandwidth Estimation. IEEE Transactions on Broadcasting 54(3), Part 2, 599–611 (2008)Google Scholar
  11. 11.
    The EFIPSANS project,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anastasios Zafeiropoulos
    • 1
  • Athanassios Liakopoulos
    • 1
  • Alan Davy
    • 2
  • Ranganai Chaparadza
    • 3
  1. 1.Greek Research & Technology NetworkAthensGreece
  2. 2.Telecommunications Software & Systems GroupWaterford Institute of TechnologyWaterfordIreland
  3. 3.Fraunhofer FOKUS Institute for Open Communication SystemsBerlinGermany

Personalised recommendations