Advertisement

Applying Process Mining in SOA Environments

  • Ateeq Khan
  • Azeem Lodhi
  • Veit Köppen
  • Gamal Kassem
  • Gunter Saake
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6275)

Abstract

Process mining is an emerging analysis technique, which extracts process knowledge from data and provides various benefits to organizations. In Service Oriented Computing environment, different services collaborate with others to carry out the operations and therefore overall picture of operations and execution is not clear. Process mining extracts the information from log files of systems, as recorded during executions, and depicts the reality. In order to apply process mining, extraction of process trace data from log files is a pre-requisite step. A case study demonstrates the practical applicability of our proposed framework for extraction of the process trace data from application systems and integration portals.

Keywords

Business process analysis Process trace data Log files SAP Process Integration Process mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., Günther, C., Recker, J., Reichert, M.: Using process mining to analyze and improve process flexibility. In: Latour, T., Petit, M. (eds.) Proceedings of the CAiSE 2006 Workshops / 7th Int’l Workshop on BPMDS 2006, Namur, June 2006, pp. 168–177. Presses Universitaires de Namur (2006)Google Scholar
  2. 2.
    Weijters, A.J.M.M., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on KDE 16, 2004 (2004)Google Scholar
  3. 3.
    van der Aalst, W.M.P.: Business alignment: using process mining as a tool for delta analysis and conformance testing. Requir. Eng. 10(3), 198–211 (2005)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Supported Coop. Work 14(6), 549–593 (2005)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: A research agenda. Computers in Industry 53, 231–244 (2004)CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W.M.P.: Challenges in business process analysis. In: Filipe, J., Cordeiro, J., Cardoso, J. (eds.) Proceedings of the 9th ICEIS. Lecture Notes in Business Information Processing, vol. 12, pp. 27–42. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Muehlen, M.Z.: Workflow-based Process Controlling. Foundation, Design, and Implementation of Workflow-driven Process Information Systems. Advances in Information Systems and Management Science, vol. 6. Logos, Berlin (2004)Google Scholar
  8. 8.
    van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data. In: Conference on Advanced Information Systems Engineering (CAiSE) Workshops, vol. 161, p. 209 (2005)Google Scholar
  9. 9.
    Khan, A., Lodhi, A.: Analysis of Business Processes in Heterogeneous Environment: SAP as a Use Case. Master thesis, School of Computer Science, University of Magdeburg (February 2009)Google Scholar
  10. 10.
    Dongen, B., Medeiros, A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The proM framework: A new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Günther, C., van der Aalst, W.M.P.: A generic import framework for process event logs. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 81–92. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Greco, G., Guzzo, A., Manco, G.: Mining and reasoning on workflows. IEEE Transactions on KDE 17(4), 519–534 (2005)Google Scholar
  13. 13.
    Tiwari, A., Turner, C., Majeed, B.: A review of business process mining: State of the art and future trends. BPM Journal 14, 5–22 (2008)Google Scholar
  14. 14.
    van Giessel, M.: Process mining in sap r/3. Master’s thesis, Eindhoven University of Technology, Eindhoven (2004)Google Scholar
  15. 15.
    Ingvaldsen, J., Gulla, J.: Preprocessing support for large scale process mining of sap transactions. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Casati, F., Shan, M.-C.: Semantic analysis of business process executions. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business process intelligence. Computers in Industry 53, 321–343 (2004)CrossRefGoogle Scholar
  18. 18.
    Kassem, G.: Application Usage Mining: Grundlagen und Verfahren. PhD thesis, School of Computer Science, University of Magdeburg (2007) ISBN: 3832259953Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ateeq Khan
    • 1
  • Azeem Lodhi
    • 1
  • Veit Köppen
    • 1
  • Gamal Kassem
    • 1
  • Gunter Saake
    • 1
  1. 1.School of Computer ScienceUniversity of MagdeburgGermany

Personalised recommendations