Multi-level Monitoring and Analysis of Web-Scale Service Based Applications

  • Adrian Mos
  • Carlos Pedrinaci
  • Guillermo Alvaro Rey
  • Jose Manuel Gomez
  • Dong Liu
  • Guillaume Vaudaux-Ruth
  • Samuel Quaireau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6275)


This paper presents a platform that aims at monitoring and analyzing large service-oriented applications executing on a very large scale. This is part of a vision of web-scale service utilization and management that is proposed by the SOA4All EU project. The paper shows how the platform obtains data from distributed runtimes and how it presents monitoring information at different levels of abstraction. They range from low-level infrastructure-related event details to high-level service and process analysis. Each level uses appropriate visualization techniques and widgets in order to convey the relevant information to the users in an efficient manner. The platform is under development and an advanced prototype is already available and described in the paper.


monitoring service-based applications business processes knowledge extraction user interfaces for monitoring 


  1. 1.
    Mos, A., Boulze, A., Quaireau, S., Meynier, C.: Multi-layer perspectives and spaces in SOA. In: Proceedings of the 2nd international Workshop on Systems Development in SOA Environments (SDSOA 2008), Leipzig, Germany (May 2008)Google Scholar
  2. 2.
    Buneman, P., Khanna, S., Tan, W.C.: Why and Where: A Characterization of Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, p. 316. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Green, T.J., Karvounarakis, G., Tannen, V.: Provenance Semirings. In: Proceedings of the 26th Symposium on Principles of Database Systems (PODS). ACM, New York (June 2007)Google Scholar
  4. 4.
    Muhlen, M.z.: Workflow-based Process Controlling. In: Foundation, Design, and Implementation of Workflow-driven Process Information Systems, Logos, Berlin, vol. 6 (2004)Google Scholar
  5. 5.
    Hur, W., Bae, H., Kang, S.-H.: Customizable Workflow Monitoring. Concurrent Engineering 11(4), 313–325 (2003)CrossRefGoogle Scholar
  6. 6.
    Pedrinaci, C., Markovic, I., Hasibether, F., Domingue, J.: Strategy-driven business process analysis. In: 12th Conference on Business Information Systems, BIS (2009)Google Scholar
  7. 7.
    Uschold, M., King, M., Moralee, S., Zorgios, Y.: The Enterprise Ontology. Knowledge Engineering Review 13(1), 31–89 (1998)CrossRefGoogle Scholar
  8. 8.
    Fox, M.S.: The TOVE Project Towards a Common-Sense Model of the Enterprise. In: Belli, F., Radermacher, F.J. (eds.) IEA/AIE 1992. LNCS, vol. 604, pp. 25–34. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  9. 9.
    Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A Core Ontology for Business Process Analysis. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 49–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Pedrinaci, C., Lambert, D., Wetzstein, B., van Lessen, T., Cekov, L., Dimitrov, M.: SENTINEL: A Semantic Business Process Monitoring Tool. In: Workshop: Ontology-supported Business Intelligence (OBI 2008) at 7th International Semantic Web Conference (ISWC 2008), Karlsruhe, Germany (2008)Google Scholar
  11. 11.
    Hartig, O.: Provenance Information in the Web of Data. In: Proc. of the Linked Data on the Web Workshop at WWW (2009)Google Scholar
  12. 12.
    Moreau, L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan, Y., Futrelle, J., McGrath, R., Myers, J., Paulson, P., Bowers, S., Ludaescher, B., Kwasnikowska, N., Van den Bussche, J., Ellkvist, T., Freire, J., Groth, P.: The Open Provenance Model.Technical report, Electronics and Computer Science. University of Southampton (2008)Google Scholar
  13. 13.
    Bose, R., Frew, J.: Lineage retrieval for scientificdata processing: A survey. ACM Computing Surveys 37(1), 1–28 (2005)CrossRefGoogle Scholar
  14. 14.
    Simmhan, Y., Plale, B., Gannon, D.: A Survey ofData Provenance in e-Science. SIGMOD Record 34(3), 31–36 (2005)CrossRefGoogle Scholar
  15. 15.
    Harth, A., Polleres, A., Decker, S.: Towards a Social Provenance Model for the Web. In: Proceedings of theWorkshop on Principles of Provenance (November 2007)Google Scholar
  16. 16.
    Mühlen, M.: Workflow-based Process Controlling. In: Foundation, Design, and Implementation of Workflow-driven Process Information Systems. Advances in Information Systems and Management Science, vol. 6. Logos, Berlin (2004)Google Scholar
  17. 17.
    Casati, F., Castano, S., Fugini, M., Mirbel, I., Pernici, B.: Using patterns to design rules in workflows. IEEE Trans. Softw. Eng. 26(8), 760–785 (2000)CrossRefGoogle Scholar
  18. 18.
    Kueng, P., Kueng, P., Meier, A., Meier, A., Wettstein, T.: Computer-based Performance Measurement in SME’s: Is there any option. In: Proceedings of the International Conference on Systems Thinking in Management, pp. 8–10 (2000)Google Scholar
  19. 19.
    Alves de Medeiros, A.K., Pedrinaci, C., van der Aalst, W., Domingue, J., Song, M., Rozinat, A., Norton, B., Cabral, L.: An Outlook on Semantic Business Process Mining and Monitoring. In: Proceedings of International IFIP Workshop On Semantic Web & Web Semantics, SWWS 2007 (2007)Google Scholar
  20. 20.
    Sayal, M., Casati, F., Dayal, U., Shan, M.-C.: Business process cockpit. In: VLDB 2002: Proceedings of the 28th international conference on Very Large Data Bases. VLDB Endowment, pp. 880–883 (2002)Google Scholar
  21. 21.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business Process Intelligence. Computers in Industry 53(3), 321–343 (2004)CrossRefGoogle Scholar
  22. 22.
    Castellanos, M., Casati, F., Dayal, U., Shan, M.-C.: A comprehensive and automated approach to intelligent business processes execution analysis. Distributed and Parallel Databases 16(3), 239–273 (2004)CrossRefGoogle Scholar
  23. 23.
    Wahli, U., Avula, V., Macleod, H., Saeed, M., Vinther, A.: Business Process Management: Modeling through Monitoring Using WebSphere V6.0.2 Products. Number SG24714801. IBM RedBooks (2007)Google Scholar
  24. 24.
    Oracle Corporation. Oracle Business Activity Monitoring (BAM) (2008),
  25. 25.
    Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: ICSOC 2004: Proceedings of the 2nd international conference on Service oriented computing, pp. 193–202. ACM Press, New York (2004)Google Scholar
  26. 26.
    Roth, H., Schiefer, J., Schatten, A.: Probing and Monitoring of WSBPEL Processes with Web Services. In: CEC-EEE 2006: Proceedings of the The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, Washington, DC, USA, p. 30. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  27. 27.
    Alves de Medeiros, A.K., Van der Aalst, W., Pedrinaci, C.: Semantic Process Mining Tools: Core Building Blocks. In: 16th European Conference on Information Systems, Galway, Ireland (June 2008)Google Scholar
  28. 28.
    Mos, A., Pedrinaci, C., Rey, G.A., Martinez, I., Hamerling, C., Vaudaux-Ruth, G., Liu, D., Quaireau, S.: D2.3.2 Service Monitoring and Management Tool Suite First Prototype, SOA4All Deliverables,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adrian Mos
    • 1
  • Carlos Pedrinaci
    • 2
  • Guillermo Alvaro Rey
    • 3
  • Jose Manuel Gomez
    • 3
  • Dong Liu
    • 2
  • Guillaume Vaudaux-Ruth
    • 1
  • Samuel Quaireau
    • 1
  1. 1.INRIASaint Ismier CedexFrance
  2. 2.Knowledge Media InstituteThe Open University Walton HallMilton KeynesUnited Kingdom
  3. 3.iSOCOMadridSpain

Personalised recommendations