Dealing with Fixable and Non-fixable Properties in Service Matchmaking

  • Octavio Martín-Díaz
  • Antonio Ruiz-Cortés
  • José Ma García
  • Miguel Toro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6275)


In the context of service discovery, matchmakers check the compliance of service-level objectives from providers and consumers. The problem of bounded uncertainty arises if some property is non-fixable. In this case, the provider is not able to control the value it takes at runtime, so the eventual consumer must not have the choice to select a value and fix it, but only knowing the guaranteed range of values it may take. To the best of our knowledge, there does not exist any approach which deals with this scenario. Most matchmakers work as if all properties were fixable, and a few have assumed the contrary. In either case, the accuracy of their results is likely to be in question since there may be involved both fixable and non-fixable properties at the same time, and there may also exist dependencies between them. In order to improve the accuracy, we present a holistic approach to matchmaking under bounded uncertainty and propose constraint programming as our choice to deal with it, so that matchmaking is transformed into a quantified constraint satisfaction problem.


  1. 1.
    Afandi, R., Zhang, J., Gunter, C.A.: AMPol-Q: Adaptive Middleware Policy to Support QoS. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 165–178. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Andrieux, A., Czakowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement) Version 1.1 draft 20 (September 2006)Google Scholar
  3. 3.
    Bordeaux, L., Monfroy, E.: Beyond NP: Arc-Consistency for Quantified Constraints. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 371–386. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for Workflows and Web Service Processes. Journal of Web Semantics 1(3), 281–308 (2004)CrossRefGoogle Scholar
  5. 5.
    Cheng, W., Wang, H.: Uncertainty-Aware QoS Description and Selection Model for Web Services. In: 4th IEEE Services Computing Conf., pp. 154–161 (2007)Google Scholar
  6. 6.
    Cheng, W., Wang, H.: Web Service Decision-Making Model Based on Uncertain-but-Bounded Attributes. In: 4th IEEE SCC Workshop on Semantic Web for Web Services and Processes, pp. 81–86. IEEE CS Press, Los Alamitos (2007)Google Scholar
  7. 7.
    Frølund, S., Koistinen, J.: Quality-of-Service Specification in Distributed Object Systems. Distributed Systems Engineering Journal 5(4) (1998)Google Scholar
  8. 8.
    Gent, I.P., Nightingale, P., Rowley, A., Stergiou, K.: Solving Quantified Constraint Satisfaction Problems. Artificial Intelligence 172(6-7), 738–771 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hentenryck, P.: Constraint and Integer Programming in OPL. Informs Journal on Computing 14(4), 345–372 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A Probabilistic Approach to Modeling and Estimating the QoS of Web-Services-based Workflows. Information Sciences 177(23), 5484–5503 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Li, B., Nahrstedt, K.: A Control-Based Middleware Framework for Quality of Service Adaptations. Journal on Selected Areas in Communications 17(9), 1632–1650 (1999)CrossRefGoogle Scholar
  12. 12.
    Mandaric, A., Oberweis, A., Perc, P.: Web Services-based Architecture for Reducing Behaviour and Quality Uncertainties. In: 1st IEEE Conf. on e-Science and Grid Computing, Melbourne, Australia, pp. 320–327 (December 2005)Google Scholar
  13. 13.
    Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.: Service-Oriented Computing: A Research Roadmap. In: Dagstuhl Seminar on Service Oriented Computing (2006)Google Scholar
  14. 14.
    Ruiz-Cortés, A., Martín-Díaz, O., Durán, A., Toro, M.: Improving the Automatic Procurement of Web Services using Constraint Programming. International Journal of Cooperative Information Systems 14(4), 439–467 (2005)CrossRefGoogle Scholar
  15. 15.
    Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1995)Google Scholar
  16. 16.
    Vu, L., Aberer, K.: A Probabilistic Framework for Decentralized Management of Trust and Quality. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 328–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Wang, P., Chao, K.M., Lo, C.C., Huang, C.L., Li, T.: A Fuzzy Model for Selection of QoS-Aware Web Services. In: 2nd Intl. Conf. on e-Business Engineering, Shanghai, China, pp. 585–593. IEEE Computer Society, Los Alamitos (October 2006)Google Scholar
  18. 18.
    Wohlstadter, E., Tai, S., Mikalsen, T., Rouvellou, I., Davanbu, P.: GlueQoS: Middleware to Sweeten Quality-of-Service Policy Interations. In: 26th Intl. Conf. on Software Engineering, Edinburg, Scotland, pp. 189–199. IEEE CS Press, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Octavio Martín-Díaz
    • 1
  • Antonio Ruiz-Cortés
    • 1
  • José Ma García
    • 1
  • Miguel Toro
    • 1
  1. 1.Dpto. Lenguajes y Sistemas Informáticos ETS. Ingeniería InformáticaUniversidad de SevillaSevillaEspaña

Personalised recommendations