Advertisement

Online Full Body Human Motion Tracking Based on Dense Volumetric 3D Reconstructions from Multi Camera Setups

  • Tobias Feldmann
  • Ioannis Mihailidis
  • Sebastian Schulz
  • Dietrich Paulus
  • Annika Wörner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6359)

Abstract

We present an approach for video based human motion capture using a static multi camera setup. The image data of calibrated video cameras is used to generate dense volumetric reconstructions of a person within the capture volume. The 3d reconstructions are then used to fit a 3d cone model into the data utilizing the Iterative Closest Point (ICP) algorithm. We can show that it is beneficial to use multi camera data instead of a single time of flight camera to gain more robust results in the overall tracking approach.

Keywords

Graphic Processing Unit Humanoid Robot Iterative Close Point Iterative Close Point World Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: CVPR 2000, vol. 2, pp. 2126–2133 (2000)Google Scholar
  2. 2.
    Azad, P., Ude, A., Asfour, T., Dillmann, R.: Stereo-based markerless human motion capture for humanoid robot systems. In: ICRA 2007, pp. 3951–3956. IEEE, Los Alamitos (2007)Google Scholar
  3. 3.
    Knoop, S., Vacek, S., Dillmann, R.: Sensor fusion for 3d human body tracking with an articulated 3d body model. In: ICRA 2006, pp. 1686–1691. IEEE, Los Alamitos (2006)Google Scholar
  4. 4.
    Cheung, G.K., Kanade, T., Bouguet, J.Y., Holler, M.: A real time system for robust 3d voxel reconstruction of human motions. In: CVPR 2000, vol. 2, pp. 714–720 (2000)Google Scholar
  5. 5.
    Rosenhahn, B., Kersting, U.G., Smith, A.W., Gurney, J., Brox, T., Klette, R.: A system for marker-less human motion estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 230–237. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hofmann, M., Gavrila, D.M.: Single-frame 3d human pose recovery from multiple views. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2010. LNCS, vol. 5748, pp. 71–80. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Computer Vision and Image Understanding 81, 231–268 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: ICCV 1999 Frame-Rate Workshop, Kerkyra, Greece (September 1999)Google Scholar
  9. 9.
    Bouguet, J.Y.: Camera calibration toolbox for matlab (2010), http://www.vision.caltech.edu/bouguetj/calib_doc/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tobias Feldmann
    • 1
  • Ioannis Mihailidis
    • 2
  • Sebastian Schulz
    • 1
  • Dietrich Paulus
    • 2
  • Annika Wörner
    • 1
  1. 1.Group on Human Motion Analysis, Institute for Anthropomatics, Department of InformaticsKarlsruhe Institute of TechnologyGermany
  2. 2.Working Group Active Vision (AGAS), Institute for Computational Visualistics, Computer Science FacultyUniversity Koblenz-LandauGermany

Personalised recommendations