Advertisement

Instantiating General Games Using Prolog or Dependency Graphs

  • Peter Kissmann
  • Stefan Edelkamp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6359)

Abstract

This paper proposes two ways to instantiate general games specified in the game description language GDL to enhance exploration efficiencies of existing players. One uses Prolog’s inference mechanism to find supersets of reachable atoms and moves; the other one utilizes dependency graphs, a datastructure that can calculate the dependencies of the arguments of predicates by evaluating the various formulas from the game’s description.

Keywords

State Atom Dependency Graph Successor State Robot Move Disjunctive Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. In: IJCAI, pp. 1636–1642 (1995)Google Scholar
  2. 2.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  3. 3.
    Campbell, M., Hoane Jr., A.J., Hsu, F.-H.: Deep Blue. Artificial Intelligence 134(1-2), 57–83 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Edelkamp, S., Helmert, M.: Exhibiting knowledge in planning problems to minimize state encoding length. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 135–147. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing. In: AAAI, pp. 259–264 (2008)Google Scholar
  6. 6.
    Helmert, M.: Understanding Planning Tasks: Domain Complexity and Heuristic Decomposition. LNCS (LNAI), vol. 4929. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  7. 7.
    Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. JAIR 14, 253–302 (2001)zbMATHGoogle Scholar
  8. 8.
    Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic and stochastic search. In: AAAI, pp. 1194–1201 (1996)Google Scholar
  9. 9.
    Kissmann, P., Edelkamp, S.: Instantiating general games. In: IJCAI-Workshop on General Game Playing, pp. 43–50 (2009)Google Scholar
  10. 10.
    Kissmann, P., Edelkamp, S.: Layer-abstraction for symbolically solving general two-player games. In: SoCS (2010)Google Scholar
  11. 11.
    Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kuhlmann, G., Dresner, K., Stone, P.: Automatic heuristic construction in a complete general game player. In: AAAI, pp. 1457–1462 (2006)Google Scholar
  13. 13.
    Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General game playing: Game description language specification. Technical Report LG-2006-01, Stanford Logic Group (April 2006)Google Scholar
  14. 14.
    Méhat, J., Cazenave, T.: Ary, a general game playing program. In: 13th Board Game Studies Colloquium (2010)Google Scholar
  15. 15.
    Schaeffer, J.: One Jump Ahead: Computer Perfection at Checkers. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: AAAI, pp. 1191–1196 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter Kissmann
    • 1
  • Stefan Edelkamp
    • 1
  1. 1.TZI Universität BremenGermany

Personalised recommendations