OLAP Personalization with User-Describing Profiles

  • Natalija Kozmina
  • Laila Niedrite
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 64)


In this paper we have highlighted five existing approaches for introducing personalization in OLAP: preference constructors, dynamic personalization, visual OLAP, recommendations with user session analysis and recommendations with user profile analysis and have analyzed research papers within these directions. We have pointed out applicability of personalization to OLAP schema elements in these approaches. The comparative analysis has been made in order to highlight a certain personalization approach. A new method has been proposed, which provides exhaustive description of interaction between user and data warehouse, using the concept of Zachman Framework [1, 2], according to which a set of user-describing profiles (user, preference, temporal, spatial, preferential and recommendational) have been developed. Methods of profile data gathering and processing are described in this paper.


OLAP personalization user preferences profiles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zachman, J.A.: The Zachman Framework: A Primer for Enterprise Engineering and Manufacturing. In: Zachman International (2003)Google Scholar
  2. 2.
    The Zachman FrameworkTM for Enterprise Architecture,
  3. 3.
    Koutrika, G., Ioannidis, Y.E.: Personalization of Queries in Database Systems. In: Proceedings of 20th International Conference on Data Engineering (ICDE’04), Boston, MA, USA, March 30-April 2, pp. 597–608 (2004)Google Scholar
  4. 4.
    Garrigós, I., Pardillo, J., Mazón, J.-N., Trujillo, J.: A Conceptual Modeling Approach for OLAP Personalization. In: Laender, A.H.F. (ed.) ER 2009. LNCS, vol. 5829, pp. 401–414. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Golfarelli, M., Rizzi, S.: Expressing OLAP Preferences. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 83–91. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query Recommendations for OLAP Discovery Driven Analysis. In: Proceedings of 12th ACM International Workshop on Data Warehousing and OLAP (DOLAP’09), Hong Kong, November 6, pp. 81–88 (2009)Google Scholar
  7. 7.
    Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Preference-Based Recommendations for OLAP Analysis. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) Data Warehousing and Knowledge Discovery. LNCS, vol. 5691, pp. 467–478. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Mansmann, S., Scholl, M.H.: Exploring OLAP Aggregates with Hierarchical Visualization Techniques. In: Proceedings of 22nd Annual ACM Symposium on Applied Computing (SAC’07), Multimedia & Visualization Track, Seoul, Korea, March 2007, pp. 1067–1073 (2007)Google Scholar
  9. 9.
    Mansmann, S., Scholl, M.H.: Visual OLAP: A New Paradigm for Exploring Multidimensonal Aggregates. In: Proceedings of IADIS International Conference on Computer Graphics and Visualization (MCCSIS’08), Amsterdam, The Netherlands, July 24-26, pp. 59–66 (2008)Google Scholar
  10. 10.
    Solodovnikova, D.: Data Warehouse Evolution Framework. In: Proceedings of the Spring Young Researcher’s Colloquium on Database and Information Systems SYRCoDIS, Moscow, Russia (2007),
  11. 11.
    Thalhammer, T., Schrefl, M., Mohania, M.: Active Data Warehouses: Complementing OLAP with Active Rules. In: Data & Knowledge Engineering, December 2001, vol. 39(3), pp. 241–269. Elsevier Science Publishers B. V., Amsterdam (2001)Google Scholar
  12. 12.
    Garrigós, I., Gómez, J.: Modeling User Behaviour Aware WebSites with PRML. In: Proceedings of the CAISE’06 Third International Workshop on Web Information Systems Modeling (WISM ’06), Luxemburg, June 5-9, pp. 1087–1101 (2006)Google Scholar
  13. 13.
    Ravat, F., Teste, O.: Personalization and OLAP Databases. In: Annals of Information Systems. New Trends in Data Warehousing and Data Analysis, vol. 3. Springer, US (2009)Google Scholar
  14. 14.
    Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H.: Personalization of MDX Queries. In: Proceedings of XXIIemes Journees Bases de Donnees Avancees (BDA’06), Lille, France (2006)Google Scholar
  15. 15.
    Kozmina, N., Niedrite, L.: Research Directions of OLAP Personalizaton. In: Proceedings of 19th International Conference on Information Systems Development (ISD’10), Prague, Czech Republic (August 2010)Google Scholar
  16. 16.
    Jones, M.E., Song, I.-Y.: Dimensional Modeling: Identifying, Classifying & Applying Patterns. In: Proc. of ACM 8th International Workshop on Data Warehousing and OLAP (DOLAP’05), Bremen, Germany, pp. 29–37 (2005)Google Scholar
  17. 17.
    Suh, Y., Woo, W.: Context-based User Profile Management for Personalized Services. In: Ubicomp Workshop (ubiPCMM), pp. 64–73 (2005)Google Scholar
  18. 18.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit, The Complete Guide to Dimensional Modeling, 2nd edn., p. 421. John Wiley & Sons, Inc., New York (2002)Google Scholar
  19. 19.
    Silverston, L.: The Data Model Resource Book, Revised edn., vol. 1, p. 542. John Wiley & Sons, USA (2001)Google Scholar
  20. 20.
    Jensen, C.S., Kligys, A., Pedersen, T.B., Timko, I.: Multidimensional Data Modeling for Location-based Services. The VLDB Journal — The International Journal on Very Large Data Bases 13(1), 1–21 (2004)CrossRefGoogle Scholar
  21. 21.
    Poole, J., Chang, D., Tolbert, D., Mellor, D.: Common Warehouse Metamodel Developers Guide, p. 704. Wiley Publishing, Chichester (2003)Google Scholar
  22. 22.
  23. 23.
    Imhoff, C., Galemmo, N., Geiger, J.G.: Mastering Data Warehouse Design: Relational and Dimensional Techniques, p. 456. Wiley Publishing, USA (2003)Google Scholar
  24. 24.
    IP Address Geolocation to Identify Website Visitor’s Geographical Location,
  25. 25.
    My Browser Info,
  26. 26.
    Find IP Address: IP Lookup,
  27. 27.
    Solodovņikova, D.: Building Queries on Multiple Versions of Data Warehouse. In: Proceedings of the 8th International Baltic Conference on Databases and Information Systems, Tallinn, Estonia, pp. 75–86 (2008)Google Scholar
  28. 28.
    Drachsler, H., Hummel, H.G.K., Koper, R.: Personal Recommender Systems for Learners in Lifelong Learning Networks: the Requirements, Techniques and Model. International Journal of Learning Technology 3(4), 404–423 (2008)CrossRefGoogle Scholar
  29. 29.
    Ji, J.Z., Liu, C.N., Sha, Z.Q., Zhong, N.: Personalized Recommendation Based on a Multilevel Customer Model. International Journal of Pattern Recognition and Artificial Intelligence, World Scientific 19(7), 895–916 (2005)CrossRefGoogle Scholar
  30. 30.
    Pazzani, M.J.: A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review 13(5-6), 393–408 (1999)CrossRefGoogle Scholar
  31. 31.
    Rich, E.: User Modeling via Stereotypes. International Journal of Cognitive Science 3, 329–354 (1979)CrossRefGoogle Scholar
  32. 32.
    Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Natalija Kozmina
    • 1
  • Laila Niedrite
    • 1
  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations