Advertisement

A New Approach for Solving the Generalized Traveling Salesman Problem

  • P. C. Pop
  • O. Matei
  • C. Sabo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6373)

Abstract

The generalized traveling problem (GTSP) is an extension of the classical traveling salesman problem. The GTSP is known to be an NP-hard problem and has many interesting applications. In this paper we present a local-global approach for the generalized traveling salesman problem. Based on this approach we describe a novel hybrid metaheuristic algorithm for solving the problem using genetic algorithms. Computational results are reported for Euclidean TSPlib instances and compared with the existing ones. The obtained results point out that our hybrid algorithm is an appropriate method to explore the search space of this complex problem and leads to good solutions in a reasonable amount of time.

Keywords

generalized traveling salesman problem hybrid algorithms genetic algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In: Proc. of the 4th International Conference on Genetic Algorithms, San Diego, CA (July 1991)Google Scholar
  2. 2.
    Bontoux, B., Artigues, C., Feillet, D.: A Memetic Algorithm with a Large Neighborhood Crossover Operator for the Generalized Traveling Salesman Problem. Computers & Operations Research (2009) (in press)Google Scholar
  3. 3.
    Fischetti, M., Salazar, J.J., Toth, P.: The symmetric generalized traveling salesman polytope. Networks 26, 113–123 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Operations Research 45, 378–394 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling salesman problem. Natural Computing 9, 47–60 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Henry-Labordere: The record balancing problem: A dynamic programming solution of a generalized traveling salesman problem. RAIRO Operations Research B2, 43-49 (1969)Google Scholar
  7. 7.
    Hu, B., Raidl, G.: Effective neighborhood structures for the generalized traveling salesman problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 36–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Laporte, G., Nobert, Y.: Generalized Traveling Salesman through n sets of nodes: an integer programming approach. INFOR 21, 61–75 (1983)zbMATHGoogle Scholar
  9. 9.
    Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the generalized traveling salesman problem. Journal of Operational Research Society 47, 1461–1467 (1996)CrossRefzbMATHGoogle Scholar
  10. 10.
    Matei, O.: Evolutionary Computation: Principles and Practices, Risoprint (2008)Google Scholar
  11. 11.
    Noon, C.E., Bean, J.C.: A Lagrangian based approach for the asymmetric generalized traveling salesman problem. Operations Research 39, 623–632 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pintea, C., Pop, P.C., Chira, C.: Reinforcing Ant Colony System for the Generalized Traveling Salesman Problem. In: Proc. of International Conference Bio-Inspired Computing-Theory and Applications (BIC-TA), Wuhan, China. Evolutionary Computing Section, pp. 245–252 (2006)Google Scholar
  13. 13.
    Pop, P.C.: The generalized minimum spanning tree problem. Twente University Press, The Netherlands (2002)zbMATHGoogle Scholar
  14. 14.
    Pop, P.C., Kern, W., Still, G.J.: A new relaxation method for the generalized minimum spanning tree problem. European Journal of Operational Research 170, 900–908 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pop, P.C.: A survey of different integer programming formulations of the generalized minimum spanning tree problem. Carpathian J. of Math. 25(1), 104–118 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Pop, P.C., Matei, O., Pop Sitar, C., Chira, C.: A Genetic Algorithm for Solving the Generalized Vehicle Routing Problem. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010, Part II. LNCS, vol. 6077, pp. 119–126. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Renaud, J., Boctor, F.F.: An efficient composite heuristic for the Symmetric Generalized Traveling Salesman Problem. European Journal of Operational Research 108(3), 571–584 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Saskena, J.P.: Mathematical model of scheduling clients through welfare agencies. Journal of the Canadian Operational Research Society 8, 185–200 (1970)MathSciNetGoogle Scholar
  19. 19.
    Schwefel, H.P.: Collective phenomena in evolutionary systems. In: Proc. of 31st Annual Meetting of the International Society for General System Research, pp. 1025–1033 (1987)Google Scholar
  20. 20.
    Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. European Journal of Operations Research 174, 38–53 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Srivastava, S.S., Kumar, S., Garg, R.C., Sen, P.: Generalized traveling salesman problem through n sets of nodes. CORS Journal 7, 97–101 (1969)zbMATHGoogle Scholar
  22. 22.
    Yanga, J., Shi, X., Marchese, M., Liang, Y.: An ant colony optimization method for generalized TSP problem. Progress in Natural Science 18(11), 1417–1422 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
  24. 24.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • P. C. Pop
    • 1
  • O. Matei
    • 2
  • C. Sabo
    • 1
  1. 1.Dept. of Mathematics and Computer ScienceNorth University of Baia MareBaia MareRomania
  2. 2.Dept. of Electrical EngineeringNorth University of Baia MareBaia MareRomania

Personalised recommendations