Advertisement

Adaptive Containment of Time-Bounded Byzantine Faults

  • Yukiko Yamauchi
  • Toshimitsu Masuzawa
  • Doina Bein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6366)

Abstract

In this paper, we introduce a novel Byzantine fault model called time-bounded Byzantine fault that imposes an upper bound on the number of malicious actions of a Byzantine faulty process. We also propose a new method for adaptive fault-containment against time-bounded Byzantine faults that guarantees that the number of perturbed processes depends on the number of malicious actions at Byzantine processes. The proposed information diffusion method imposes k consecutive state changes on a process so that the process diffuses information to processes at distance k. We present an example of a leader election protocol to show the adaptive containment of the proposed method.

Keywords

Leader Election Transient Fault Malicious Action Correct Execution Faulty Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Dolev, S.: Local stabilizer. Journal of Parallel and Distributed Computing 62, 745–765 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Biely, M., Huttle, M.: Consensus when all processes may be byzantine for some time. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 120–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Burman, J., Herman, T., Kutten, S., Patt-Shamir, B.: Asynchronous and fully self-stabilizing time-adaptice majority consensus. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 146–160. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of ACM 17(11), 643–644 (1974)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  6. 6.
    Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing algorithms. In: Proceedings of the 15th PODC, pp. 45–54 (May 1996)Google Scholar
  7. 7.
    Kutten, S., Patt-Shamir, B.: Time-adaptive self stabilization. In: Proceedings of the 16th PODC, pp. 149–158 (1997)Google Scholar
  8. 8.
    Kutten, S., Peleg, D.: Fault-local distributed mending. In: Proceedings of the 14th PODC, pp. 20–27 (August 1995)Google Scholar
  9. 9.
    Masuzawa, T., Tixeuil, S.: A self-stabilizing link-coloring protocol resilient to unbounded byzantine faults in arbitrary networks. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 118–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 440–453. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceedings of the 21st SRDS, pp. 22–29 (October 2002)Google Scholar
  12. 12.
    Schneider, M.: Self-stabilization. ACM Computing Survey 25(1), 45–67 (1993)CrossRefGoogle Scholar
  13. 13.
    Widder, J., Gridling, G., Weiss, B., Blanquart, J.: Synchronous consensus with mortal byzantines. In: Proceedings of the 37th DSN, pp. 102–112 (June 2007)Google Scholar
  14. 14.
    Zhao, Y., Bastani, F.: A self-adjusting algorithm for byzantine agreement. Distributed Computing 5, 219–226 (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yukiko Yamauchi
    • 1
  • Toshimitsu Masuzawa
    • 2
  • Doina Bein
    • 3
  1. 1.Nara Institute of Science and TechnologyJapan
  2. 2.Osaka UniversityJapan
  3. 3.The Pennsylvania State UniversityUSA

Personalised recommendations