Learning Spaces as Representational Scaffolds for Learning Conceptual Knowledge of System Behaviour

  • Bert Bredeweg
  • Jochem Liem
  • Wouter Beek
  • Paulo Salles
  • Floris Linnebank
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6383)


Scaffolding is a well-known approach to bridge the gap between novice and expert capabilities in a discovery-oriented learning environment. This paper discusses a set of knowledge representations referred to as Learning Spaces (LSs) that can be used to support learners in acquiring conceptual knowledge of system behaviour. The LSs are logically self-contained, meaning that models created at a specific LS can be simulated. Working with the LSs provides scaffolding for learners in two ways. First, each LS provides a restricted set of representational primitives to express knowledge, which focus the learner’s knowledge construction process. Second, the logical consequences of an expression derived upon simulating, provide learners a reflective instrument for evaluating the status of their understanding, to which they can react accordingly.

The work presented here is part of the DynaLearn project, which builds an Interactive Learning Environment to study a constructive approach to having learners develop a qualitative understanding of how systems behave. The work presented here thus focuses on tools to support educational research. Consequently, user-oriented evaluation of these tools is not a part of this paper.


Conceptual knowledge Qualitative reasoning Architecture Scaffolding Knowledge representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biswas, G., Schwartz, D., Leelawong, K., Vye, N., TAG, V.: Learning by Teaching: A New Agent Paradigm for Educational Software. Applied Artificial Intelligence, Special Issue on Educational Agents 19(3), 363–392 (2005)CrossRefGoogle Scholar
  2. 2.
    Blair, K., Schwartz, D., Biswas, G., Leelawong, K.: Pedagogical Agents for Learning by Teaching: Teachable Agents. Technical report, School of Education, Stanford University (2006)Google Scholar
  3. 3.
    Blauvelt, R.G.: A design environment for automata: supporting children’s construction of mechanical reasoning and spatial cognition. Doctoral dissertation, University of Colorado at Boulder, USA (2001)Google Scholar
  4. 4.
    Bredeweg, B., Forbus, K.: Qualitative Modeling in Education. AI Magazine 24(4), 35–46 (2003)Google Scholar
  5. 5.
    Bredeweg, B., Gómez-Pérez, A., André, E., Salles, P.: DynaLearn - Engaging and Informed Tools for Learning Conceptual System Knowledge. In: Pirone, R., Azevedo, R., Biswas, G. (eds.) Cognitive and Metacognitive Educational Systems (MCES 2009), AAAI Fall Symposium, Arlington, Virginia USA, November 5-7. Technical report FS-09-02, pp. 46–51. AAAI Press, Menlo Park (2009a)Google Scholar
  6. 6.
    Bredeweg, B., Salles, P.: Qualitative models of ecological systems — Editorial introduction. Ecological Informatics 4(5-6), 261–262 (2009b)CrossRefGoogle Scholar
  7. 7.
    Bredeweg, B., Linnebank, F., Bouwer, A., Liem, J.: Garp3 — Workbench for Qualitative Modelling and Simulation. Ecological Informatics 4(5-6), 263–281 (2009c)CrossRefGoogle Scholar
  8. 8.
    Bredeweg, B., André, E., Bee, N., Bühling, R., Gómez-Pérez, J.M., Häring, M., Liem, J., Linnebank, F., Thanh Tu Nguyen, B., Trna, M., Wißner, M.: Technical design and architecture. DynaLearn, EC FP7 STREP project 231526, Deliverable D2. (2009d)Google Scholar
  9. 9.
    Elio, R., Sharf, P.B.: Modeling novice-to-expert shifts in problem solving and knowledge organization. Cognitive Science 14, 579–639 (1990)CrossRefGoogle Scholar
  10. 10.
    Forbus, K.D.: Qualitative process theory. Artificial Intelligence 24, 85–168 (1984)CrossRefGoogle Scholar
  11. 11.
    Forbus, K.D., Feltovich, P.J.: Smart Machines in Education. AAAI Press / MIT Press, Cambridge (2001a)Google Scholar
  12. 12.
    Forbus, K.D., Carney, K., Harris, R., Sherin, B.L.: A qualitative modeling environment for middle-school students: A progress report. In: The 15th Int. Workshop on QR, San Antonio, Texas, May 17-18 (2001b)Google Scholar
  13. 13.
    Forbus, K.D.: Qualitative Modeling. In: Harmelen, F.v., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 3, pp. 361–393 (2008)Google Scholar
  14. 14.
    Frederiksen, J.R., White, B.Y.: Conceptualizing and constructing linked models: creating coherence in complex knowledge systems. In: Brna, P., Baker, M., Stenning, K., Tiberghien, A. (eds.) The Role of Communication in Learning to Model, pp. 69–96. Lawrence Erlbaum Associates, London (2002)Google Scholar
  15. 15.
    Gartner, A., Conway Kohler, M., Reissman, F.: Children Teach Children: Learning by Teaching. Harper&Row, New York (1971)Google Scholar
  16. 16.
    Hucke, L., Fischer, H.E.: The link of theory and practice in traditional and in computer-based university laboratory experiments. In: Psillos, D., Niedderer, H. (eds.) Teaching and learning in the science laboratory, pp. 205–218. Kluwer, Dordrecht (2002)Google Scholar
  17. 17.
    Jackson, S.L., Krajcik, J., Soloway, E.: The design of guided learner-adaptable scaffolding in interactive learning environments. In: Proceedings of ACM CHI 1998, pp. 187–194. ACM Press, New York (1998)Google Scholar
  18. 18.
    de Jong, T.: Technological Advances in Inquiry Learning. Science 312, 532–533 (2006)CrossRefGoogle Scholar
  19. 19.
    de Kleer, J.H., Brown, J.S.: A qualitative physics based on confluences. Artificial Intelligence 24, 7–83 (1984)CrossRefGoogle Scholar
  20. 20.
    Lester, J.C., Converse, S.A., Kahler, S.E., Barlow, S.T., Stone, B.A., Bhogal, R.S.: The Persona Effect: Affective Impact of Animated Pedagogical Agents. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 359–366. ACM Press, New York (1997)CrossRefGoogle Scholar
  21. 21.
    Mettes, C.T.C.W., Roossink, H.J.: Linking factual and procedural knowledge in solving science problems: A case study in a thermodynamics course. Instructional Science 10, 333–361 (1981)CrossRefGoogle Scholar
  22. 22.
    Niedderer, H., Aufschnaiter, S., Tiberghien, A., Buty, C., Haller, K., Hucke, L., Seter, F., Fischer, H.: Talking physics in labwork contexts - A category based analysis of videotapes. In: Psillos, D., Niedderer, H. (eds.) Teaching and learning in the science laboratory, pp. 31–40. Kluwer, Dordrecht (2002)Google Scholar
  23. 23.
    Norman, D.A.: Things that make us Smart. Perseus Books, Cambridge (1993)Google Scholar
  24. 24.
    Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University Press, New York (1984)CrossRefGoogle Scholar
  25. 25.
    Osborne, J., Simon, S., Collins, S.: Attitudes towards science: a review of the literature and its implications. Int. Journal of Science Education 25(9), 1049–1079 (2003)CrossRefGoogle Scholar
  26. 26.
    Otero, V., Johnson, A., Goldberg, F.: How Does the Computer Facilitate the Development of Physics Knowledge Among Prospective Elementary Teachers? Journal of Education 181(2), 57–89 (1999)Google Scholar
  27. 27.
    Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, NY (1980)Google Scholar
  28. 28.
    Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy, D., Strohecker, C.: Affective Learning: A Manifesto. BT Technology Journal 22(4), 253–269 (2004)CrossRefGoogle Scholar
  29. 29.
    Renkl, A.: Lernen durch Lehren. In: Rost, D. (ed.) Handwörterbuch Pädagogische Psychologie, vol. 3, pp. 416–420. Beltz Verlag, Auflage (2006)Google Scholar
  30. 30.
    Resnick, M.: Changing the centralized mind. MIT press, Cambridge (1994)Google Scholar
  31. 31.
    Richmond, G., Peterson, S.: STELLA II: An Introduction to Systems Thinking, High Performance Systems, Hanover, N.H (1992)Google Scholar
  32. 32.
    Schumacher, R.M., Gentner, D.: Transfer of training as analogical mapping. IEEE Transactions of Systems, Man, and Cybernetics 18, 592–600 (1988)CrossRefGoogle Scholar
  33. 33.
    Schwarz, C.V., White, B.Y.: Metamodeling Knowledge: Developing Students’ Understanding of Scientific Modeling. Cognition and Instruction 23(2), 165–205 (2005)CrossRefGoogle Scholar
  34. 34.
    Winkels, R., Bredeweg, B. (eds.): Qualitative Models in Interactive Learning Environments. Interactive Learning Environment (special issue) 5(1-2), 1–134 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bert Bredeweg
    • 1
  • Jochem Liem
    • 1
  • Wouter Beek
    • 1
  • Paulo Salles
    • 2
  • Floris Linnebank
    • 1
  1. 1.Informatics InstituteUniversity of AmsterdamAmsterdamNetherlands
  2. 2.Institute of Biological SciencesUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations