Advertisement

Learning from Erroneous Examples: When and How Do Students Benefit from Them?

  • Dimitra Tsovaltzi
  • Erica Melis
  • Bruce M. McLaren
  • Ann-Kristin Meyer
  • Michael Dietrich
  • George Goguadze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6383)

Abstract

We investigate whether erroneous examples in the domain of fractions can help students learn from common errors of other students presented in a computer-based system. Presenting the errors of others could spare students the embarrassment and demotivation of confronting their own errors. We conducted lab and school studies with students of different grade levels to measure the effects of learning with erroneous examples. We report results that compare the learning gains of three conditions: a control condition, an experimental condition in which students were presented with erroneous examples without help, and an experimental condition in which students were provided with additional error detection and correction help. Our results indicate significant metacognitive learning gains of erroneous examples for lower-grade students, as well as cognitive and conceptual learning gains for higher-grade students when additional help is provided with the erroneous examples, but not for middle-grade students.

Keywords

Erroneous examples empirical studies fractions misconceptions adaptive learning metacognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones Newton, K.: An Extensive Analysis of Preservice Teachers’ Knowledge of Fractions. American Educational Research Journal 45(4), 1080–1110 (2008)CrossRefGoogle Scholar
  2. 2.
    Stafylidou, S., Vosniadou, S.: The development of students’ understanding of the numerical values of fractions. Learning and Instruction 14, 503–518 (2004)CrossRefGoogle Scholar
  3. 3.
    McLaren, B.M., Lim, S.J., Koedinger, K.R.: When and how often should worked examples be given to students? New results and a summary of the current state of research. In: Love, B.C., McRae, K., Sloutsky, V.M. (eds.) Proceedings of the 30th Annual Conference of the Cognitive Science Society, pp. 2176–2181. Cognitive Science Society (2008)Google Scholar
  4. 4.
    Paas, F.G., van Merrienboerg, J.J.G.: Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology 86(1), 122–133 (1994)CrossRefGoogle Scholar
  5. 5.
    Renkl, A.: Learning from worked-out examples: A study on individual differences. Cognitive Science 21, 1–29 (1997)CrossRefGoogle Scholar
  6. 6.
    Trafton, J.G., Reiser, B.J.: The contribution of studying examples and solving problems. In: Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society (1993)Google Scholar
  7. 7.
    Tsamir, P., Tirosh, D.: In-service mathematics teachers’ views or errors in the classroom. In: International Symposium: Elementary Mathematics Teaching, Prague (August 2003)Google Scholar
  8. 8.
    Borasi, R.: Capitalising on errors as “springboards for inquiry”: A teaching experiment. Journal for Research in Mathematics Education 25(2), 166–208 (1994)Google Scholar
  9. 9.
    Müller, A.: Aus eignen und fremden Fehlern lernen. Praxis der Naturwissenschaften 52(1), 18–21 (2003)Google Scholar
  10. 10.
    Oser, F., Hascher, T.: Lernen aus Fehlern - Zur Psychologie des negativen Wissens. Schriftenreihe zum Projekt: Lernen Menschen aus Fehlern? Zur Entwicklung einer Fehlerkultur in der Schule, Pädagogisches Institut der Universität Freiburg (1997)Google Scholar
  11. 11.
    Seidel, T., Prenzel, M.: Mit Fehlern umgehen - Zum Lernen motivieren. Praxis der Naturwissenschaften 52(1), 30–34 (2003)Google Scholar
  12. 12.
    Strecker, C.: Aus Fehlern lernen und verwandte Themen, http://www.blk.mat.uni-bayreuth.de/material/db/33/fehler.pdf
  13. 13.
    OECD: International report PISA plus (2001)Google Scholar
  14. 14.
    Siegler, R.S.: Microgenetic studies of self-explanation. In: Granott, N., Parziale, J. (eds.) Microdevelopment, Transition Processes in Development and Learning, pp. 31–58. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  15. 15.
    Siegler, R.S., Chen, Z.: Differentiation and integration: Guiding principles for analyzing cognitive change. Developmental Science 11, 433–448 (2008)CrossRefGoogle Scholar
  16. 16.
    Grosse, C.S., Renkl, A.: Finding and fixing errors in worked examples: Can this foster learning outcomes? Learning and Instruction 17, 612–634 (2007)CrossRefGoogle Scholar
  17. 17.
    Kopp, V., Stark, R., Fischer, M.R.: Fostering diagnostic knowledge through computer-supported, case-based worked examples: effects of erroneous examples and feedback. Medical Education 42, 823–829 (2008)CrossRefGoogle Scholar
  18. 18.
    Melis, E., Goguadze, G., Homik, M., Libbrecht, P., Ullrich, C., Winterstein, S.: Semantic-aware components and services in ActiveMath. British Journal of Educational Technology. Special Issue: Semantic Web for E-learning 37(3), 405–423 (2006)CrossRefGoogle Scholar
  19. 19.
    Paas, F.G., Renkl, A., Sweller, J.: Cognitive load theory and instructional design: Recent developments. Educational Psychologist 38, 1–4 (2003)CrossRefGoogle Scholar
  20. 20.
    Skinner, B.F.: The behavior of organisms: An experimental analysis. Appleton-Century, New York (1938)Google Scholar
  21. 21.
    Melis, E.: Design of erroneous examples for ActiveMath. In: Bredeweg, B., Looi, C.-K., McCalla, G., Breuker, J. (eds.) 12th International Conference on Artificial Intelligence in Education. Supporting Learning Through Intelligent and Socially Informed Technology (AIED 2005), vol. 125, pp. 451–458. IOS Press, Amsterdam (2005)Google Scholar
  22. 22.
    Malle, G.: Grundvorstellungen zu Bruchzahlen. Mathematik Lehren 123, 4–8 (2004)Google Scholar
  23. 23.
    Tsovaltzi, D., Melis, E., McLaren, B.M., Dietrich, M., Goguadze, G., Meyer, A.-K.: Erroneous Examples: A Preliminary Investigation into Learning Benefits. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 688–693. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Ohlsson, S.: Learning from Performance Errors. Psychological Review 103(2), 241–262 (1996)CrossRefGoogle Scholar
  25. 25.
    van Gog, T., Pass, F., van Merrienboerg, J.J.G.: Process-Oriented Worked Examples: Improving Transfer Performance Through Enhanced Understanding. Instructional Science 32, 83–98 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dimitra Tsovaltzi
    • 1
  • Erica Melis
    • 1
  • Bruce M. McLaren
    • 1
  • Ann-Kristin Meyer
    • 1
  • Michael Dietrich
    • 1
  • George Goguadze
    • 1
  1. 1.DFKI GmbHGerman Research Centre for Artificial IntelligenceSaarbrückenGermany

Personalised recommendations