Approximate Shortest Path Queries Using Voronoi Duals

  • Shinichi Honiden
  • Michael E. Houle
  • Christian Sommer
  • Martin Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6290)


We propose an approximation method to answer point-to-point shortest path queries in undirected edge-weighted graphs, based on random sampling and Voronoi duals. We compute a simplification of the graph by selecting nodes independently at random with probability p. Edges are generated as the Voronoi dual of the original graph, using the selected nodes as Voronoi sites. This overlay graph allows for fast computation of approximate shortest paths for general, undirected graphs. The time–quality tradeoff decision can be made at query time. We provide bounds on the approximation ratio of the path lengths as well as experimental results. The theoretical worst-case approximation ratio is bounded by a logarithmic factor. Experiments show that our approximation method based on Voronoi duals has extremely fast preprocessing time and efficiently computes reasonably short paths.


Short Path Voronoi Diagram Query Time Path Query Voronoi Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACS99]
    Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algorithm for the k-level uncapacitated facility location problem. Information Processing Letters 72, 161–167 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [AGK+04]
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM Journal on Computing 33(3), 544–562 (2004); Announced at STOC 2001zbMATHCrossRefMathSciNetGoogle Scholar
  3. [Aur91]
    Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)CrossRefGoogle Scholar
  4. [BD08]
    Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. In: Proceedings of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX 2008), pp. 13–26 (2008)Google Scholar
  5. [BDS+08]
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 303–318. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. [BFM+07]
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX 2007), New Orleans, Louisiana, USA, January 6 (2007)Google Scholar
  7. [BGSU08]
    Baswana, S., Gaur, A., Sen, S., Upadhyay, J.: Distance oracles for unweighted graphs: Breaking the quadratic barrier with constant additive error. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 609–621. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. [BK06]
    Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), Berkeley, California, USA, October 21-24, pp. 591–602 (2006)Google Scholar
  9. [Cha07]
    Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC 2007), pp. 590–598 (2007)Google Scholar
  10. [Coo03]
    Cooperative Association for Internet Data Analysis. Router-level topology measurements (2003), file: itdk0304_rlinks_undirected.gz
  11. [CP07]
    Chan, T.M., Patrascu, M.: Voronoi diagrams in \(n\cdot2^{O(\sqrt{\lg\lg n})}\) time. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, pp. 31–39 (2007)Google Scholar
  12. [DFS90]
    Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete & Computational Geometry 5, 399–407 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Dij59]
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Dir50]
    Dirichlet, G.L.: Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Journal für die Reine und Angewandte Mathematik 40, 209–227 (1850)zbMATHCrossRefGoogle Scholar
  15. [Dor67]
    Doran, J.E.: An approach to automatic problem-solving. Machine Intelligence 1, 105–124 (1967)Google Scholar
  16. [DSSW06]
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In: 9th DIMACS Implementation Challenge (2006)Google Scholar
  17. [DW07]
    Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. [EG08]
    Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic lens. In: Proceedings of the 16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS 2008, Irvine, California, USA, November 5-7, p. 16 (2008)Google Scholar
  19. [EMK97]
    Embrechts, P., Mikosch, T., Klüppelberg, C.: Modelling extremal events: for insurance and finance. Springer, London (1997)zbMATHGoogle Scholar
  20. [EP04]
    Elkin, M., Peleg, D.: (1 + ε, β)-spanner constructions for general graphs. SIAM Journal on Computing 33(3), 608–631 (2004); Announced at STOC 2001zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Erw00]
    Erwig, M.: The graph Voronoi diagram with applications. Networks 36(3), 156–163 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [FT87]
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34(3), 596–615 (1987); Announced at FOCS 1984CrossRefMathSciNetGoogle Scholar
  23. [FW93]
    Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with fusion trees. Journal of Computer and System Sciences 47(3), 424–436 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  24. [GH05]
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Vancouver, British Columbia, Canada, January 23-25, pp. 156–165 (2005)Google Scholar
  25. [GKP05]
    Garg, N., Khandekar, R., Pandit, V.: Improved approximation for universal facility location. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Vancouver, British Columbia, Canada, January 23-25, pp. 959–960 (2005)Google Scholar
  26. [GSDF03]
    Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.): SIGKDD Proceedings (2003)Google Scholar
  27. [GSSD08]
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. [GW05]
    Goldberg, A.V., Werneck, R.F.F.: Computing point-to-point shortest paths from external memory. In: Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments (ALENEX 2005), pp. 26–40 (2005)Google Scholar
  29. [HKRS97]
    Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. Journal of Computer and System Sciences 55(1), 3–23 (1997); Announced at STOC 1994zbMATHCrossRefMathSciNetGoogle Scholar
  30. [KG92]
    Mark Keil, J., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete & Computational Geometry 7, 13–28 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  31. [Lau04]
    Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Geoinformation und Mobilität – von der Forschung zur praktischen Anwendung, vol. 22, pp. 219–230 (2004)Google Scholar
  32. [Ley02]
    Ley, M.: The DBLP computer science bibliography: Evolution, research issues, perspectives. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 1–10. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  33. [Meh88]
    Mehlhorn, K.: A faster approximation algorithm for the Steiner problem in graphs. Information Processing Letters 27(3), 125–128 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  34. [Mit03]
    Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2) (2003)Google Scholar
  35. [Ram96]
    Raman, R.: Priority queues: Small, monotone and trans-dichotomous. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 121–137. Springer, Heidelberg (1996)Google Scholar
  36. [Ram97]
    Raman, R.: Recent results on the single-source shortest paths problem. SIGACT News 28, 81–87 (1997)CrossRefGoogle Scholar
  37. [SBR+06]
    Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Research 34(1), 535–539 (2006)CrossRefGoogle Scholar
  38. [Sha75]
    Shamos, M.I.: Geometric complexity. In: Conference Record of Seventh Annual ACM Symposium on Theory of Computation (STOC 1975), Albuquerque, New Mexico, USA, May 5-7, pp. 224–233 (1975)Google Scholar
  39. [SMS+02]
    Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research 30(1), 303–305 (2002)CrossRefGoogle Scholar
  40. [SR90]
    Szpankowski, W., Rego, V.: Yet another application of a binomial recurrence. Order statistics. Computing 43(4), 401–410 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  41. [SS06]
    Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. [SS07a]
    Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23–36. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  43. [SS07b]
    Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  44. [Svi08]
    Svitkina, Z.: Lower-bounded facility location. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), San Francisco, California, USA, January 20-22, pp. 1154–1163 (2008)Google Scholar
  45. [Tho99]
    Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM 46(3), 362–394 (1999); Announced at FOCS 1997zbMATHCrossRefMathSciNetGoogle Scholar
  46. [Tho00a]
    Thorup, M.: Floats, integers, and single source shortest paths. Journal of Algorithms 35(2), 189–201 (2000); Announced at STACS 1998zbMATHCrossRefMathSciNetGoogle Scholar
  47. [Tho00b]
    Thorup, M.: On RAM priority queues. SIAM Journal of Computing 30(1), 86–109 (2000); Announced at SODA 1996zbMATHCrossRefMathSciNetGoogle Scholar
  48. [Tho04a]
    Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51(6), 993–1024 (2004); Announced at FOCS 2001zbMATHCrossRefMathSciNetGoogle Scholar
  49. [Tho04b]
    Thorup, M.: Integer priority queues with decrease key in constant time and the single source shortest paths problem. Journal of Computer and System Sciences 69(3), 330–353 (2004); Announced at STOC 2003zbMATHCrossRefMathSciNetGoogle Scholar
  50. [Tho07]
    Thorup, M.: Equivalence between priority queues and sorting. Journal of the ACM 54(6) (2007); Announced at FOCS 2002Google Scholar
  51. [TZ05]
    Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1–24 (2005); Announced at STOC 2001zbMATHCrossRefMathSciNetGoogle Scholar
  52. [Vor07]
    Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133, 97–178 (1907)Google Scholar
  53. [Wil64]
    Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7, 347–348 (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shinichi Honiden
    • 1
  • Michael E. Houle
    • 1
  • Christian Sommer
    • 1
  • Martin Wolff
    • 1
  1. 1.National Institute of InformaticsTokyoJapan

Personalised recommendations