Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space

  • Ophir Setter
  • Micha Sharir
  • Dan Halperin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6290)


We present a general framework for computing Voronoi diagrams of different classes of sites under various distance functions in \({\mathbb R}^{2}\). Most diagrams mentioned in the paper are in the plane. However, the framework is sufficiently general to support diagrams embedded on a family of two-dimensional parametric surfaces in three-dimensions. The computation of the diagrams is carried out through the construction of envelopes of surfaces in 3-space provided by Cgal (the Computational Geometry Algorithm Library). The construction of the envelopes follows a divide-and-conquer approach. A straightforward application of the divide-and-conquer approach for Voronoi diagrams yields algorithms that are inefficient in the worst case. We prove that through randomization, the expected running time becomes near-optimal in the worst case. We also show how to apply the new framework and other existing tools from Cgal to compute minimum-width annuli of sets of disks, which requires the computation of two Voronoi diagrams of different types, and of the overlay of the two diagrams. We do not assume general position. Namely, we handle degenerate input, and produce exact results.


Voronoi Diagram Bisector Curve Voronoi Edge Minimization Diagram Trait Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th IEEE Symposium on the Foundations of Computer Science, pp. 151–162 (1975)Google Scholar
  2. 2.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, NYC (2000)zbMATHGoogle Scholar
  3. 3.
    Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J.B. (eds.) Handbook of Computational Geometry, pp. 201–290. Elsevier Science Publishers B.V., North-Holland (2000)Google Scholar
  4. 4.
    Boissonnat, J.D., Wormser, C., Yvinec, M.: Curved Voronoi diagrams. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Barequet, G., Dickerson, M.T., Drysdale, R.L.S.: 2-point site Voronoi diagrams. Discrete Applied Mathematics 122(1-3), 37–54 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  7. 7.
    Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2(1-4), 153–174 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7(1-6), 381–413 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Computational Geometry: Theory and Applications 3(3), 157–184 (1993)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Karavelas, M.I., Yvinec, M.: The Voronoi diagram of planar convex objects. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 337–348. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Pilgerstorfer, E., Rabl, M.: Divide-and-conquer for Voronoi diagrams revisited. In: Proceedings of the 25th Annual ACM Symposium on Computational Geometry (SoCG), pp. 189–197. Association for Computing Machinery (ACM) Press, New York (2009)CrossRefGoogle Scholar
  12. 12.
    Boissonnat, J.D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations in CGAL. Computational Geometry: Theory and Applications 22(1-3), 5–19 (2002)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Emiris, I.Z., Karavelas, M.I.: The predicates of the Apollonius diagram: Algorithmic analysis and implementation. Computational Geometry: Theory and Applications 33(1-2), 18–57 (2006)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi diagram. In: Proceedings of the 1st International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 51–62 (2004)Google Scholar
  15. 15.
    Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.: Voronoi diagram of ellipses in CGAL. In: Abstracts of the 24th European Workshop on Computational Geometry, pp. 87–90 (2008)Google Scholar
  16. 16.
    Burnikel, C., Mehlhorn, K., Schirra, S.: How to compute the Voronoi diagram of line segments: Theoretical and experimental results. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 227–239. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Held, M.: VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry: Theory and Applications 18(2), 95–123 (2001)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Hoff III, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceedings of the 26th Annual International Conference on Computer Graphics and Interactive Techniques, pp. 277–286. Association for Computing Machinery (ACM) Press, New York (1999)Google Scholar
  19. 19.
    Nielsen, F.: An interactive tour of Voronoi diagrams on the GPU. In: ShaderX6: Advanced Rendering Techniques. Charles River Media, Hingham (2008)Google Scholar
  20. 20.
    Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete & Computational Geometry 1(1), 25–44 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Meyerovitch, M.: Robust, generic and efficient construction of envelopes of surfaces in three-dimensional space. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 792–803. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Meyerovitch, M., Wein, R., Zukerman, B.: 3D Envelopes. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.4th edn. (2008)Google Scholar
  23. 23.
    Agarwal, P.K., Schwarzkopf, O., Sharir, M.: The overlay of lower envelopes and its applications. Discrete & Computational Geometry 15(1), 1–13 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Setter, O.: Constructing two-dimensional Voronoi diagrams via divide-and-conquer of envelopes in space. M.Sc. thesis, The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel (May 2009), Electronic version can be found at
  25. 25.
    Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements on parametric surfaces I: General framework and infrastructure (2010); Accepted for publication in Mathematics in Computer ScienceGoogle Scholar
  26. 26.
    Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using the Voronoi diagrams. In: Abstracts of the 1st Canadian Conference on Computational Geometry, p. 41 (1989)Google Scholar
  27. 27.
    Eigenwillig, A., Kerber, M.: Exact and efficient 2D-arrangements of arbitrary algebraic curves. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 122–131. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)Google Scholar
  28. 28.
    Berberich, E., Emeliyanenko, P.: Cgal’s curved kernel via analysis. ACS Technical Report ACS-TR-123203-04, MPI (2008)Google Scholar
  29. 29.
    Sugihara, K.: Laguerre Voronoi diagram on the sphere. Journal for Geometry and Graphics 6(1), 69–81 (2002)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. LNCS, vol. 1, pp. 452–492. World Scientific, Singapore (1995)Google Scholar
  32. 32.
    Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1999)Google Scholar
  33. 33.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.4th edn. (2008)Google Scholar
  34. 34.
    Sharir, M.: The Clarkson-Shor technique revisited and extended. Combinatorics, Probability & Computing 12(2) (2003)Google Scholar
  35. 35.
    Guibas, L.J., Seidel, R.: Computing convolutions by reciprocal search. Discrete & Computational Geometry 2(1), 175–193 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Berberich, E., Fogel, E., Halperin, D., Kerber, M., Setter, O.: Arrangements on parametric surfaces II: Concretization and applications (2010); Accepted for publication in Mathematics in Computer ScienceGoogle Scholar
  37. 37.
    Fogel, E., Setter, O., Halperin, D.: Movie: Arrangements of geodesic arcs on the sphere. In: Proceedings of the 24th Annual ACM Symposium on Computational Geometry (SoCG), pp. 218–219. Association for Computing Machinery (ACM) Press, New York (2008)Google Scholar
  38. 38.
    Knuth, D.E.: Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3. Addison-Wesley, Reading (April 1998)Google Scholar
  39. 39.
    Baccelli, F., Gloaguen, C., Zuyev, S.: Superposition of planar Voronoi tessellations. Stochastic Models 16, 69–98 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Rivlin, T.J.: Approximating by circles. Computing 21, 93–104 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. International Journal of Computational Geometry and Applications 11(6), 583–616 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Bose, P., Devroye, L.: Intersections with random geometric objects. Computational Geometry: Theory and Applications 10(3), 139–154 (1998)zbMATHMathSciNetGoogle Scholar
  43. 43.
    Nielsen, F., Boissonnat, J.D., Nock, R.: On Bregman Voronoi diagrams. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 746–755. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)Google Scholar
  44. 44.
    Onishi, K., Takayama, N.: Construction of Voronoi diagram on the upper half-plane. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 79(4), 533–539 (1996)Google Scholar
  45. 45.
    Nilforoushan, Z., Mohades, A.: Hyperbolic Voronoi diagram. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3984, pp. 735–742. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  46. 46.
    Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley, Boston (1997)Google Scholar
  47. 47.
    Myers, N.: “Traits”: A new and useful template technique. In: Lippman, S.B. (ed.) C++ Gems. SIGS Reference Library, vol. 5, pp. 451–458 (1997)Google Scholar
  48. 48.
    Berberich, E., Kerber, M.: Exact arrangements on tori and Dupin cyclides. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM), pp. 59–66. Association for Computing Machinery (ACM) Press, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ophir Setter
    • 1
  • Micha Sharir
    • 1
  • Dan Halperin
    • 1
  1. 1.School of Computer ScienceTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations