Quantification of Cytoskeletal Protein Localization from High-Content Images

  • Shiwen Zhu
  • Paul Matsudaira
  • Roy Welsch
  • Jagath C. Rajapakse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6282)


Cytoskeletal proteins function as dynamic and complex components in many aspects of cell physiology and the maintenance of cell structure. However, very little is known about the coordinated system of these proteins. The knowledge of subcellular localization of proteins is crucial for understanding how proteins function within a cell. We present a framework for quantification of cytoskeletal protein localization from high-content microscopic images. Analyses of high content images of cells transfected by cytoskeleton genes involve individual cell segmentation, intensity transformation of subcellular compartments, protein segmentation based on correlation coefficients, and colocalization quantification of proteins in subcellular components. By quantifying the abundance of proteins in different compartments, we generate colocalization profiles that give insights into the functions of different cytoskeletal proteins.


Colocalization cytoskeletal proteins subcellular localization cytoskeleton 


  1. 1.
    Khurana, S., Bittar, E.: Aspects of the cytoskeleton. Elsevier Press, Amsterdam (2006)Google Scholar
  2. 2.
    Bray, D.: Cell Movements: From Molecules to Motility, 2nd edn. Taylor & Francis Press, Abington (2001)Google Scholar
  3. 3.
    Hu, Y., Murphy, R.F.: Automated interpretation of subcellular patterns from immunofluorescence microscopy. Immunol Methods 290, 93–105 (2004)CrossRefGoogle Scholar
  4. 4.
    Huang, M.R.F.: Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics 5, 78–96 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boland, M.V., Murphy, R.F.: A Neural Network Classifier Capable of Recognizing the Patterns of all Major Subcellular Structures in Fluorescence Microscope Images of HeLa Cells. Bioinformatics 17, 1213–1223 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    Chen, X., Murphy, R.F.: Objective clustering of proteins based on subcellular location patterns. Journal of Biomedicine and Biotechnology, 87–95 (2005)Google Scholar
  7. 7.
    Hamilton, N., Pantelic, R., Hanson, K., Teasdale, R.: Fast automated cell phenotype image classification. BMC Bioinformatics 8, 110 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen, S.-C., Zhao, T., Gordon, G.J., Murphy, R.F.: Automated Image Analysis of Protein Localization in Budding Yeast. Bioinformatics 23, i66–i71 (2007)CrossRefGoogle Scholar
  9. 9.
    Bolte, S., Cordelieres, F.P.: A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy 224(3), 213–232 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    Manders, E.M., Stap, J., Brakenhoff, G.J., Driel, R., Aten, J.A.: Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J. Cell Sci. 103, 857–862 (1992)PubMedGoogle Scholar
  11. 11.
    Costes, S.V., Daelemans, D., Cho, E.H., Dobbin, Z., Pavlakis, G., Lockett, S.: Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 86, 3993–4003 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li, Q., Lau, A., Morris, T.J., Guo, L., Fordyce, C.B., Stanley, E.F.: A Syntaxin 1, Galphao, and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J. Neurosci. 24, 4070–4081 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Boutte, Y., Crosnier, M.T., Carraro, N., Traas, J., Jeunemaitre, B.S.: Immuno cytochemistry of the plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J. Cell Sci. 113, 1255–1265 (2006)CrossRefGoogle Scholar
  14. 14.
    Jaskolskia, F., Mullea, C., Manzonib, O.J.: An automated method to quantify and visualize colocalized fluorescent signals. J. Neurosci. Meth. 146, 42–49 (2005)CrossRefGoogle Scholar
  15. 15.
    Cheng, J.R., Rajapakse, J.C.: Segmentation of clustered Nuclei with Shape Markers and Marking Function. IEEE Transactions on Biomedical Engineering 56(3), 741–748 (2009)CrossRefPubMedGoogle Scholar
  16. 16.
    Yu, W., Lee, H.K., Hariharan, S., Bu, W., Ahmed, S.: Quantitative neurite outgrowth measurement based on image segmentation with topological dependence. Cytometry Part A 75A, 289–297 (2009)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Baatz, M., Schäpe, A.: Multiresolution Segmentation –an optimization approach for high quality multi-scale image segmentation. In: Strobl, J., Blaschke, T., Griesebner, G. (eds.) Angewandte Geographische Informationsverarbeitung XII, pp. 12–23. Wichmann, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shiwen Zhu
    • 1
  • Paul Matsudaira
    • 1
    • 2
  • Roy Welsch
    • 1
    • 4
  • Jagath C. Rajapakse
    • 1
    • 3
    • 5
  1. 1.Computation and System Biology, Singapore-MIT AllianceNanyang Technological UniversitySingapore
  2. 2.Department of Biology ScienceNational University of SingaporeSingapore
  3. 3.School of Computer EngineeringNanyang Technological UniversitySingapore
  4. 4.Sloan School of ManagementMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations