Consistent Wiener Filtering: Generalized Time-Frequency Masking Respecting Spectrogram Consistency

  • Jonathan Le Roux
  • Emmanuel Vincent
  • Yuu Mizuno
  • Hirokazu Kameoka
  • Nobutaka Ono
  • Shigeki Sagayama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6365)

Abstract

Wiener filtering is one of the most widely used methods in audio source separation. It is often applied on time-frequency representations of signals, such as the short-time Fourier transform (STFT), to exploit their short-term stationarity, but so far the design of the Wiener time-frequency mask did not take into account the necessity for the output spectrograms to be consistent, i.e., to correspond to the STFT of a time-domain signal. In this paper, we generalize the concept of Wiener filtering to time-frequency masks which can involve manipulation of the phase as well by formulating the problem as a consistency-constrained Maximum-Likelihood one. We present two methods to solve the problem, one looking for the optimal time-domain signal, the other promoting consistency through a penalty function directly in the time-frequency domain. We show through experimental evaluation that, both in oracle conditions and combined with spectral subtraction, our method outperforms classical Wiener filtering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diethorn, E.J.: Subband noise reduction methods for speech enhancement. In: Huang, Y., Benesty, J. (eds.) Audio Signal Processing for Next-Generation Multimedia Communication Systems, pp. 91–115. Kluwer, Dordrecht (2004)CrossRefGoogle Scholar
  2. 2.
    Vincent, E., Jafari, M.G., Abdallah, S.A., Plumbley, M.D., Davies, M.E.: Probabilistic modeling paradigms for audio source separation. In: Machine Audition: Principles, Algorithms and Systems. IGI Global (to appear)Google Scholar
  3. 3.
    Le Roux, J., Ono, N., Sagayama, S.: Explicit consistency constraints for STFT spectrograms and their application to phase reconstruction. In: Proc. SAPA, pp. 23–28 (September 2008)Google Scholar
  4. 4.
    Le Roux, J., Kameoka, H., Vincent, E., Ono, N., Kashino, K., Sagayama, S.: Complex NMF under spectrogram consistency constraints. In: Proc. ASJ Autumn Meeting, (2-4-5) (September 2009)Google Scholar
  5. 5.
    Boll, S.: Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. ASSP 27, 113–120 (1979)CrossRefGoogle Scholar
  6. 6.
    Griffin, D.W., Lim, J.S.: Signal estimation from modified short-time Fourier transform. IEEE Trans. ASSP 32(2), 236–243 (1984)CrossRefGoogle Scholar
  7. 7.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Proc. NIPS*2000, pp. 556–562. The MIT Press, Cambridge (2001)Google Scholar
  8. 8.
    Vincent, E., Gribonval, R., Plumbley, M.D.: BSS Oracle Toolbox Version 2.1, http://bass-db.gforge.inria.fr/bssoracle/
  9. 9.
    Vincent, E., Sawada, H., Bofill, P., Makino, S., Rosca, J.P.: First stereo audio source separation evaluation campaign: Data, algorithms and results. In: Proc. ICA, pp. 552–559 (September 2007)Google Scholar
  10. 10.
    Araki, S., Ozerov, A., Gowreesunker, V., Sawada, H., Theis, F., Nolte, G., Lutter, D., Duong, N.Q.: The 2010 signal separation evaluation campaign (SiSEC 2010) –Part II–: Audio source separation challenges. In: Proc. LVA/ICA (2010)Google Scholar
  11. 11.
    Yu, G., Mallat, S., Bacry, E.: Audio denoising by time-frequency block thresholding. IEEE Trans. Signal Process. 56(5), 1830–1839 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathan Le Roux
    • 1
  • Emmanuel Vincent
    • 2
  • Yuu Mizuno
    • 3
  • Hirokazu Kameoka
    • 1
  • Nobutaka Ono
    • 3
  • Shigeki Sagayama
    • 3
  1. 1.NTT Communication Science Laboratories, NTT CorporationKanagawaJapan
  2. 2.INRIA, Centre Inria Rennes - Bretagne AtlantiqueRennes CedexFrance
  3. 3.Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations