Registration of In Vivo Prostate Magnetic Resonance Images to Digital Histopathology Images

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6367)


Early and accurate diagnosis of prostate cancer enables minimally invasive therapies to cure the cancer with less morbidity. The purpose of this work is to non-rigidly register in vivo pre-prostatectomy prostate medical images to regionally-graded histopathology images from post-prostatectomy specimens, seeking a relationship between the multi parametric imaging and cancer distribution and aggressiveness. Our approach uses image-based registration in combination with a magnetically tracked probe to orient the physical slicing of the specimen to be parallel to the in vivo imaging planes, yielding a tractable 2D registration problem. We measured a target registration error of 0.85 mm, a mean slicing plane marking error of 0.7 mm, and a mean slicing error of 0.6 mm; these results compare favourably with our 2.2 mm diagnostic MR image thickness. Qualitative evaluation of in vivo imaging-histopathology fusion reveals excellent anatomic concordance between MR and digital histopathology.


Target Registration Error Digital Readout Histopathology Image Prostate Specimen Canadian Cancer Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Canadian Cancer Society’s steering committee: Canadian Cancer Statistics 2009. Canadian Cancer Society, Toronto (2009)Google Scholar
  2. 2.
    Horner, M.J., Ries, L.A.G., Krapcho, M., Neyman, N., Aminou, R., Howlader, N., Altekruse, S.F., Feuer, E.J., Huang, L., Mariotto, A., Miller, B.A., Lewis, D.R., Eisner, M.P., Stinchcomb, D.G., Edwards, B.K. (eds.): SEER Cancer Statistics Review, 1975-2006. National Cancer Institute, Bethesda (2009), Google Scholar
  3. 3.
    LaSpina, M., Haas, G.P.: Update on the diagnois and management of prostate cancer. Canadian Journal of Urology 15(suppl. 1), 3–13 (2008) (discussion 13) Google Scholar
  4. 4.
    Leite, K.R.M., Camara-Lopes, L.H.A., Dall’Oglio, M.F., Cury, J., Antunes, A.A., Sanudo, A., Srougi, M.: Upgrading the Gleason score in extended prostate biopsy: Implications for treatment choice. International Journal of Radiation Oncology Biology Physics 73, 353–356 (2009)CrossRefGoogle Scholar
  5. 5.
    Ahmed, H.U., Kirkham, A., Arya, M., Illing, R., Freeman, A., Allen, C., Emberton, M.: Is it time to consider a role for MRI before prostate biopsy? Nature Reviews Clinical Oncology 6, 197–206 (2009)CrossRefGoogle Scholar
  6. 6.
    Bax, J., Cool, D., Gardi, L., Knight, K., Smith, D., Montreuil, J., Sherebrin, S., Romagnoli, C., Fenster, A.: Mechanically assisted 3D ultrasound guided prostate biopsy system. Medical Physics 35(12), 5397–5410 (2008)CrossRefGoogle Scholar
  7. 7.
    Cool, D., Sherebrin, S., Izawa, J., Chin, J., Fenster, A.: Design and evaluation of a 3D transrectal ultrasound prostate biopsy system. Medical Physics 35(10), 4695–4707 (2008)CrossRefGoogle Scholar
  8. 8.
    Krieger, A., Susil, R.C., Ménard, C., Coleman, J.A., Fichtinger, G., Atalar, E., Whitcomb, L.L.: Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Transactions on Biomedical Engineering 52(2), 306–313 (2005)CrossRefGoogle Scholar
  9. 9.
    Polascik, T.J., Mouraviev, V.: Focal therapy for prostate cancer. Current Opinion in Urology 18(3), 269–274 (2008)CrossRefGoogle Scholar
  10. 10.
    Rouvire, O., Reynolds, C., Hulshizer, T., Rossman, P., Le, Y., Felmlee, J.P., Ehman, R.L.: Mr histological correlation: A method for cutting specimens along the imaging plane in animal or ex vivo experiments. Journal of Magnetic Resonance Imaging 23, 60–69 (2006)CrossRefGoogle Scholar
  11. 11.
    Shah, V., Pohida, T., Turkbey, B., Mani, H., Merino, M., Pinto, P., Choykey, P., Bernardo, M.: A method for correlating in vivo prostate magnetic resonance imaging and histopathology using individualized magnetic resonance-based molds. Review of Scientific Instruments 80, 104301 (2009)CrossRefGoogle Scholar
  12. 12.
    Ourselin, S., Roche, A., Prima, A., Ayache, N.: Block matching: A general framework to improve robustness of rigid registration of medical images. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 557–566. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Robarts Research InstituteCanada
  2. 2.Department of Medical BiophysicsCanada
  3. 3.Biomedical Engineering Graduate ProgramUS
  4. 4.Department of PathologyUS
  5. 5.Department of OncologyThe University of Western OntarioLondonCanada
  6. 6.Lawson Health Research InstituteLondonCanada

Personalised recommendations