An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM

  • Björn Andres
  • Jörg H. Kappes
  • Ullrich Köthe
  • Christoph Schnörr
  • Fred A. Hamprecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

Graphical models with higher order factors are an important tool for pattern recognition that has recently attracted considerable attention. Inference based on such models is challenging both from the view point of software design and optimization theory. In this article, we use the new C++ template library OpenGM to empirically compare inference algorithms on a set of synthetic and real-world graphical models with higher order factors that are used in computer vision. While inference algorithms have been studied intensively for graphical models with second order factors, an empirical comparison for higher order models has so far been missing. This article presents a first set of experiments that intends to fill this gap.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  2. 2.
    Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press, Cambridge (2009)MATHGoogle Scholar
  3. 3.
    Aji, S., McEliece, R.: The generalized distributive law. IEEE Transactions on Information Theory 46(2), 325–343 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kschischang, F., Member, S., Frey, B.J., Andrea Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE TPAMI 23(11), 1222–1239 (2001)Google Scholar
  6. 6.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 65–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Schlesinger, D.: Exact solution of permuted submodular minsum problems. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 28–38. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Komodakis, N., Paragios, N.: Beyond Pairwise Energies: Efficient Optimization for Higher-order MRFs (June 2009)Google Scholar
  9. 9.
    Kohli, P., Kumar, M.P., Torr, P.H.: P3 & beyond: Move making algorithms for solving higher order functions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(9), 1645–1656 (2009)CrossRefGoogle Scholar
  10. 10.
    Rother, C., Kohli, P., Feng, W., Jia, J.: Minimizing sparse higher order energy functions of discrete variables. In: CVPR, pp. 1382–1389 (2009)Google Scholar
  11. 11.
    Kohli, P., Ladický, L., Torr, P.H.: Robust higher order potentials for enforcing label consistency. Int. J. Comput. Vision 82(3), 302–324 (2009)CrossRefGoogle Scholar
  12. 12.
    Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Foo, N.Y. (ed.) AI 1999. LNCS, vol. 1747, pp. 467–475. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory 47(2), 736–744 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wainwright, M.J., Jordan, M.I.: Graphical Models, Exponential Families, and Variational Inference. Now Publishers Inc., Hanover (2008)Google Scholar
  15. 15.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Patt. Anal. Mach. Intell. 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  16. 16.
    Bergtholdt, M., Kappes, J., Schmidt, S., Schnörr, C.: A study of parts-based object class detection using complete graphs. Int. J. Comp. Vision 87(1-2), 93–117 (2010)Google Scholar
  17. 17.
    Besag, J.: On the statisical analysis of dirty pictures. Journal of the Royal Statistical Society B 48, 259–302 (1986)MATHMathSciNetGoogle Scholar
  18. 18.
    Andres, B., Kappes, J.H., Koethe, U., Hamprecht, F.A.: The Lazy Flipper: A minimal exhaustive search algorithm for higher order graphical models (2010) (forthcoming)Google Scholar
  19. 19.
    Minka, T., Winn, J., Guiver, J., Kannan, A.: Infer.NET 2.3, Microsoft Research Cambridge (2009), http://research.microsoft.com/infernet
  20. 20.
    Mooij, J.M., et al.: libDAI 0.2.4: A free/open source C++ library for Discrete Approximate Inference (2010), http://www.libdai.org/
  21. 21.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)CrossRefGoogle Scholar
  22. 22.
    Kolmogorov, V., Rother, C.: Comparison of energy minimization algorithms for highly connected graphs. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Tian, T.P., Sclaroff, S.: Fast Globally Optimal 2D Human Detection with Loopy Graph Models. In: CVPR (2010)Google Scholar
  24. 24.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l. Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Björn Andres
    • 1
  • Jörg H. Kappes
    • 1
  • Ullrich Köthe
    • 1
  • Christoph Schnörr
    • 1
  • Fred A. Hamprecht
    • 1
  1. 1.HCI, IWRUniversity of Heidelberg 

Personalised recommendations