Advertisement

A Convex Approach for Variational Super-Resolution

  • Markus Unger
  • Thomas Pock
  • Manuel Werlberger
  • Horst Bischof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

We propose a convex variational framework to compute high resolution images from a low resolution video. The image formation process is analyzed to provide to a well designed model for warping, blurring, downsampling and regularization. We provide a comprehensive investigation of the single model components. The super-resolution problem is modeled as a minimization problem in an unified convex framework, which is solved by a fast primal dual algorithm. A comprehensive evaluation on the influence of different kinds of noise is carried out. The proposed algorithm shows excellent recovery of information for various real and synthetic datasets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)CrossRefGoogle Scholar
  2. 2.
    Kosarev, E.L.: Shannon’s superresolution limit for signal recovery. Inverse Problems 6(1), 55 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 1167–1183 (2002)CrossRefGoogle Scholar
  4. 4.
    Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the non-local-means to super-resolution reconstruction. IEEE Transactions on Image Processing 36 (2009)Google Scholar
  5. 5.
    Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)Google Scholar
  6. 6.
    van Ouwerkerk, J.: Image super-resolution survey. Image and Vision Computing 24(10), 1039–1052 (2006)CrossRefGoogle Scholar
  7. 7.
    Mitzel, D., Pock, T., Schoenemann, T., Cremers, D.: Video super resolution using duality based TV-L1 optical flow. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 432–441. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Fast and robust multi-frame super-resolution. IEEE Transactions on Image Processing 13, 1327–1344 (2003)CrossRefGoogle Scholar
  9. 9.
    Huber, P.: Robust Statistics. Wiley, New York (1981)zbMATHCrossRefGoogle Scholar
  10. 10.
    Schoenemann, T.: Combinatorial Solutions for Shape Optimization in Computer Vision. PhD thesis, Department of Computer Science, University of Bonn, Germany (2008)Google Scholar
  11. 11.
    Shechtman, E., Caspi, Y., Irani, M.: Space-time super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 531–545 (2005)CrossRefGoogle Scholar
  12. 12.
    Takeda, H., Milanfar, P., Protter, M., Elad, M.: Super-resolution without explicit subpixel motion estimation. Trans. Img. Proc. 18(9), 1958–1975 (2009)CrossRefGoogle Scholar
  13. 13.
    Middlebury (2010), http://vision.middlebury.edu/flow/ (accessed 06-May-2010)
  14. 14.
    Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: BMVC, London, UK (September 2009)Google Scholar
  15. 15.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the mumford-shah functional. In: ICCV (2009)Google Scholar
  16. 16.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)zbMATHCrossRefGoogle Scholar
  17. 17.
    Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for tv minimization. UCLA CAM Report [09-67] (August 2009)Google Scholar
  18. 18.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Markus Unger
    • 1
  • Thomas Pock
    • 1
  • Manuel Werlberger
    • 1
  • Horst Bischof
    • 1
  1. 1.Institute for Computer Graphics and VisionGraz University of TechnologyAustria

Personalised recommendations