Computational TMA Analysis and Cell Nucleus Classification of Renal Cell Carcinoma

  • Peter J. Schüffler
  • Thomas J. Fuchs
  • Cheng Soon Ong
  • Volker Roth
  • Joachim M. Buhmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

We consider an automated processing pipeline for tissue micro array analysis (TMA) of renal cell carcinoma. It consists of several consecutive tasks, which can be mapped to machine learning challenges. We investigate three of these tasks, namely nuclei segmentation, nuclei classification and staining estimation. We argue for a holistic view of the processing pipeline, as it is not obvious whether performance improvements at individual steps improve overall accuracy. The experimental results show that classification accuracy, which is comparable to trained human experts, can be achieved by using support vector machines (SVM) with appropriate kernels. Furthermore, we provide evidence that the shape of cell nuclei increases the classification performance. Most importantly, these improvements in classification accuracy result in corresponding improvements for the medically relevant estimation of immunohistochemical staining.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagon, S.: Matlab wrapper for graph cut (December 2006), http://www.wisdom.weizmann.ac.il/~bagon
  2. 2.
    Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS Computational Biology 4(10), e1000173 (2008)CrossRefGoogle Scholar
  3. 3.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007: Proceedings of the 6th ACM international conference on Image and video retrieval, pp. 401–408. ACM, New York (2007)Google Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE transactions on Pattern Analysis and Machine Intelligence 20(12), 1222–1239 (2001)CrossRefGoogle Scholar
  6. 6.
    Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)MathSciNetGoogle Scholar
  7. 7.
    Fuchs, T.J., Wild, P.J., Moch, H., Buhmann, J.M.: Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1–8. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using matlab (2003), 993475Google Scholar
  9. 9.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefGoogle Scholar
  10. 10.
    Kononen, J., Bubendorf, L., et al.: Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4(7), 844–847 (1998)CrossRefGoogle Scholar
  11. 11.
    Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter J. Schüffler
    • 1
  • Thomas J. Fuchs
    • 1
  • Cheng Soon Ong
    • 1
  • Volker Roth
    • 1
  • Joachim M. Buhmann
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations