Solving the Direction Field for Discrete Agent Motion

  • Michael Schultz
  • Tobias Kretz
  • Hartmut Fricke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6350)


Models for pedestrian dynamics are often based on microscopic approaches allowing for individual agent navigation. To reach a given destination, the agent has to consider environmental obstacles. We propose a direction field calculated on a regular grid with a Moore neighborhood, where obstacles are represented by occupied cells. Our developed algorithm exactly reproduces the shortest path with regard to the Euclidean metric.


Eikonal Equation Robot Motion Planning Crowd Simulation Occupied Cell Moore Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Heidelberg (1997) ISBN:3-54061-270-XCrossRefzbMATHGoogle Scholar
  2. 2.
    Khatib, O.: The Potential Field Approach and Operational Space Formulation in Robot Control. In: Narendra, K. (ed.) Adaptive and Learning Systems – Theory and Application, pp. 367–377. Plenum Press, New York (1986) ISBN:978-0306422638CrossRefGoogle Scholar
  3. 3.
    Latombe, J.-C.: Robot Motion Planning, 7th edn. Kluwer Academic Publishers, Dordrecht (1991) ISBN:978-0792391296CrossRefzbMATHGoogle Scholar
  4. 4.
    Bruns, H.: Das Eikonal. S. Hirzel (1895)Google Scholar
  5. 5.
    Frank, P.: Über die Eikonalgleichung in allgemein anisotropen Medien. Annalen der Physik 389(23) (1927)Google Scholar
  6. 6.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA, 8431–8435 (1998)Google Scholar
  8. 8.
    Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999) ISBN: 978-0521645577zbMATHGoogle Scholar
  9. 9.
    Zhao, H.: A fast sweeping method for eikonal equations. Mathematics of computation 74(250), 603–628 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jeong, W.-K., Whitaker, R.: A fast eikonal equation solver for parallel systems. In: SIAM Conference on Computational Science and Engineering (2007)Google Scholar
  11. 11.
    Gremaud, P., Kuster, C.: Computational study of fast methods for the eikonal equation. SIAM journal on scientific computing 27(6), 1803–1816 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kretz, T., Bönisch, C., Vortisch, P.: Comparison of Various Methods for the Calculation of the Distance Potential Field. In: PED 2008, pp. 335–346. Springer, Heidelberg (2010) ISBN: 978-3-642-04503-5Google Scholar
  13. 13.
    Hughes, R.: A continuum theory for the flow of pedestrians. Transportation Research Part B 36(6), 507–535 (2002)CrossRefGoogle Scholar
  14. 14.
    Hoogendoorn, S., Bovy, P.: Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B 38(2), 169–190 (2004)CrossRefGoogle Scholar
  15. 15.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: ACM SIGGRAPH 2006 Papers, p. 1168 (2006)Google Scholar
  16. 16.
    Shopf, J., Oat, C., Barczak, J.: GPU Crowd Simulation. In: ACM Transactions on Graphics, Siggraph Asia 2008, vol. 27 (2008)Google Scholar
  17. 17.
    Kretz, T.: Pedestrian Traffic: on the Quickest Path. Journal of Statistical Mechanics: Theory and Experiment P03012 (2009)Google Scholar
  18. 18.
    Bleiweiss, A.: Multi agent navigation on gpu. Eprint (2009)Google Scholar
  19. 19.
    Steffen, B., Seyfried, A.: Modeling of pedestrian movement around 90 and 180 degree bends. In: Workshop on Fire Protection and Life Safety in Buildings and Transportation Systems (2009)Google Scholar
  20. 20.
    Kretz, T.: Applications of the Dynamic Distance Potential Field Method. In: Dai, S., et al. (eds.) Traffic and Granular Flow 2009 (2010) (in press)Google Scholar
  21. 21.
    Lee, C.: An algorithm for path connection and its application. IRE Transactions on Electronic Computers EC-10(3), 346–365 (1961)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schultz, M.: Entwicklung eines individuenbasierten Modells zur Abbildung des Bewegungsverhaltens von Passagieren im Flughafenterminal. PhD thesis, Technische Universität Dresden (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Schultz
    • 1
  • Tobias Kretz
    • 2
  • Hartmut Fricke
    • 1
  1. 1.Institute of Logistics and AviationTechnische Universität DresdenDresdenGermany
  2. 2.PTV Planung Transport Verkehr AGKarlsruheGermany

Personalised recommendations