Probabilistic Data: A Tiny Survey

  • Ander de Keijzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6379)

Abstract

In this survey, we will visit existing projects and proposals for uncertain data, all supporting probabilistic handling of confidence scores.

Several models for uncertain data have been proposed over the years. Initial efforts all focused on relational data [3] and also currently efforts are being made in the relational setting [10,4,5,7,2]. With relational data models, two methods to associate confidences with data are commonly used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Senellart, P.: Querying and updating probabilistic information in XML. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1059–1068. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Antova, L., Koch, C., Olteanu, D.: Maybms: Managing incomplete information with probabilistic world-set decompositions. In: ICDE, pp. 1479–1480. IEEE, Los Alamitos (2007)Google Scholar
  3. 3.
    Barbará, D., Garcia-Molina, H., Porter, D.: A probabilistic relational data model. In: Bancilhon, F., Tsichritzis, D.C., Thanos, C. (eds.) EDBT 1990. LNCS, vol. 416, pp. 60–74. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  4. 4.
    Benjelloun, O., Sarma, A.D., Hayworth, C., Widom, J.: An introduction to uldbs and the trio system. IEEE Data Eng. Bull. 29(1), 5–16 (2006)Google Scholar
  5. 5.
    Boulos, J., Dalvi, N.N., Mandhani, B., Mathur, S., Re, C., Suciu, D.: MYSTIQ: a system for finding more answers by using probabilities. In: Proceedings of SIGMOD, Baltimore, Maryland, USA, pp. 891–893 (2005)Google Scholar
  6. 6.
    Cheng, R., Prabhakar, S.: Sensors, Uncertainty Models and Probabilistic Queries. In: Encyclopedia of Database Technologies and Applications. Idea Group Publishing, USA (2005)Google Scholar
  7. 7.
    Cheng, R., Singh, S., Prabhakar, S.: U-DBMS: A database system for managing constantly-evolving data. In: Proceedings of VLDB, Trondheim, Norway, pp. 1271–1274 (2005)Google Scholar
  8. 8.
    Hung, E., Getoor, L., Subrahmanian, V.S.: PXML: A probabilistic semistructured data model and algebra. In: Proceedings of ICDE, Bangalore, India, pp. 467–478 (2003)Google Scholar
  9. 9.
    van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic xml approach to data integration. In: Proceedings of ICDE, Tokyo, Japan, pp. 459–470 (2005)Google Scholar
  10. 10.
    Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: ProbView: a flexible probabilistic database system. ACM Transactions on Database Systems 22(3), 419–469 (1997)CrossRefGoogle Scholar
  11. 11.
    Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In: CIDR, pp. 262–276 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ander de Keijzer
    • 1
  1. 1.MIRA - Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations