Sparse Spatio-temporal Inference of Electromagnetic Brain Sources

  • Carsten Stahlhut
  • Hagai T. Attias
  • David Wipf
  • Lars K. Hansen
  • Srikantan S. Nagarajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6357)

Abstract

The electromagnetic brain activity measured via MEG (or EEG) can be interpreted as arising from a collection of current dipoles or sources located throughout the cortex. Because the number of candidate locations for these sources is much larger than the number of sensors, source reconstruction involves solving an inverse problem that is severely underdetermined. Bayesian graphical models provide a powerful means of incorporating prior assumptions that narrow the solution space and lead to tractable posterior distributions over the unknown sources given the observed data. In particular, this paper develops a hierarchical, spatio-temporal Bayesian model that accommodates the principled computation of sparse spatial and smooth temporal M/EEG source reconstructions consistent with neurophysiological assumptions in a variety of event-related imaging paradigms. The underlying methodology relies on the notion of automatic relevance determination (ARD) to express the unknown sources via a small collection of spatio-temporal basis functions. Experiments with several data sets provide evidence that the proposed model leads to improved source estimates. The underlying methodology is also well-suited for estimation problems that arise from other brain imaging modalities such as functional or diffusion weighted MRI.

Keywords

underdetermined inverse problems M/EEG source reconstruction probabilistic graphical models variational Bayes ARD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baillet, S., Garnero, L.: A bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE Trans. on Biomed. Eng. 44(5), 374–385 (1997)CrossRefGoogle Scholar
  2. 2.
    Daunizeau, J., Mattout, J., Clonda, D., Goulard, B., Benali, H., Lina, J.M.: Bayesian spatio-temporal approach for EEG source reconstruction: Conciliating ECD and distributed models. IEEE Trans. on Biomed. Eng. 53(3), 503–516 (2006)CrossRefGoogle Scholar
  3. 3.
    Effern, A., Lehnertz, K., Fernandez, G., Grunwald, T., David, P., Elger, C.E.: Single trial analysis of event related potentials: non-linear de-noising with wavelets. Clinical neurophysiology 111(12), 2255–2263 (2000)CrossRefGoogle Scholar
  4. 4.
    Trujillo-Barreto, N.J., Aubert-Vazquez, E., Penny, W.D.: Bayesian M/EEG source reconstruction with spatio-temporal priors. NeuroImage 39, 318–335 (2008)CrossRefGoogle Scholar
  5. 5.
    Bolstad, A., Van Veen, B., Nowak, R.: Spacetime event sparse penalization for magneto-/electroencephalography. NeuroImage 46(4), 1066–1081 (2009)CrossRefGoogle Scholar
  6. 6.
    Sahani, M., Nagarajan, S.S.: Reconstructing meg sources with unknown correlations. In: Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004)Google Scholar
  7. 7.
    Wipf, D.P., Owen, J.P., Attias, H.T., Sekihara, K., Nagarajan, S.S.: Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. Neuroimage 49(1), 641–655 (2010)CrossRefGoogle Scholar
  8. 8.
    Zumer, J.M., Attias, H.T., Sekihara, K., Nagarajan, S.S.: Probabilistic algorithms for meg/eeg source reconstruction using temporal basis functions learned from data. NeuroImage 41, 924–940 (2008)CrossRefGoogle Scholar
  9. 9.
    Dyrholm, M., Makeig, S., Hansen, L.K.: Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG. Neural computation 19(4), 934–955 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Nagarajan, S.S., Attias, H.T., Hild, K.E., Sekihara, K.: A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data. Statistics in Medicine 26(21), 3886–3910 (2007)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Attias, H.: A variational Bayesian framework for graphical models. Advances in neural information processing systems 12(1-2), 209–215 (2000)Google Scholar
  12. 12.
    MacKay, D.J.C.: Bayesian interpolation. Neural computation 4(3), 415–447 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carsten Stahlhut
    • 1
  • Hagai T. Attias
    • 2
  • David Wipf
    • 3
  • Lars K. Hansen
    • 1
  • Srikantan S. Nagarajan
    • 3
  1. 1.DTU InformaticsKgs. LyngbyDenmark
  2. 2.Golden Metallic Inc.San FranciscoUSA
  3. 3.University of CaliforniaSan FranciscoUSA

Personalised recommendations