Relation-Aware Spreadsheets for Multimodal Volume Segmentation and Visualization

  • Lin Zheng
  • Yingcai Wu
  • Kwan-liu Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6357)

Abstract

Multimodal volume data commonly found in medical imaging applications present both opportunities and challenges to segmentation and visualization tasks. This paper presents a user directed volume segmentation system. Through a spreadsheets interface, the user can interactively examine and refine segmentation results obtained from automatic clustering. In addition, the user can isolate or highlight a feature of interest in a volume based on different modalities, and see the corresponding segmented results. Our system is easy to use since the preliminary segmentation results are organized and presented to the user in a relation-aware fashion based on the spatial relations between the segmented regions. We demonstrate this system using two multimodal datasets.

Keywords

User Interface Multimodal Volume Data Segmentation Visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chan, M.Y., Qu, H., Chung, K.K., Mak, W.H., Wu, Y.: Relation-aware volume exploration pipeline. IEEE Transactions on Visualization and Computer Graphics 14(6), 168–175 (2008)CrossRefGoogle Scholar
  2. 2.
    Chi, E.H., Riedl, J., Barry, P., Konstan, J.: Principles for information visualization spreadsheets. IEEE Computer Graphics and Applications 18, 30–38 (1998)CrossRefGoogle Scholar
  3. 3.
    Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1(3), 275–316 (1997)CrossRefGoogle Scholar
  4. 4.
    Foo, J.L.: A survey of user interaction and automation in medical image segmentation methods. Tech. rep., Iowa State Universtity - Human Computer Interaction (2006)Google Scholar
  5. 5.
    Jankun-Kelly, T.J., Ma, K.L.: Visualization exploration and encapsulation via a spreadsheet-like interface. IEEE Transactions on Visualization and Computer Graphics 7(3), 275–287 (2001)CrossRefGoogle Scholar
  6. 6.
    Levoy, M.: Spreadsheets for images. In: ACM Siggraph (1994)Google Scholar
  7. 7.
    Lundstrom, C., Ljung, P., Ynnerman, A.: Local histograms for design of transfer functions in direct volume rendering. IEEE Transactions on Visualization and Computer Graphics 12(6), 1570–1579 (2006)CrossRefGoogle Scholar
  8. 8.
    Olabarriagaa, S., Smeulders, A.: Interaction in the segmentation of medical images: A survey. Medical Image Analysis 5(2), 127–142 (2001)CrossRefGoogle Scholar
  9. 9.
    Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: International Conference on the Principles of Knowledge Representation and Reasoning (1992)Google Scholar
  10. 10.
    Schockaert, S., Cornelis, C., Cock, M.D., Kerre, E.E.: Fuzzy spatial relations between vague regions. In: IEEE International Conference on Intelligent Systems (2006)Google Scholar
  11. 11.
    Sowizral, H.: Scene graphs in the new millennium. IEEE Computer Graphics and Applications 20(1), 56–57 (2000)CrossRefGoogle Scholar
  12. 12.
    Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.: Afeature-driven approach to locating optimal viewpoints for volume visualization. IEEE Visualization (2005)Google Scholar
  13. 13.
    Tzeng, F.Y., Ma, K.L.: Cluster-space interface for volume data. In: Eurographics - IEEE TCVG Symposium on Visualization (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lin Zheng
    • 1
  • Yingcai Wu
    • 1
  • Kwan-liu Ma
    • 1
  1. 1.Department of Computer ScienceThe University of CaliforniaDavis

Personalised recommendations