NewsGist: A Multilingual Statistical News Summarizer

  • Mijail Kabadjov
  • Martin Atkinson
  • Josef Steinberger
  • Ralf Steinberger
  • Erik van der Goot
Conference paper

DOI: 10.1007/978-3-642-15939-8_40

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6323)
Cite this paper as:
Kabadjov M., Atkinson M., Steinberger J., Steinberger R., van der Goot E. (2010) NewsGist: A Multilingual Statistical News Summarizer. In: Balcázar J.L., Bonchi F., Gionis A., Sebag M. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. Lecture Notes in Computer Science, vol 6323. Springer, Berlin, Heidelberg

Abstract

In this paper we present NewsGist, a multilingual, multi-document news summarization system underpinned by the Singular Value Decomposition (SVD) paradigm for document summarization and purpose-built for the Europe Media Monitor (EMM). The summarization method employed yielded state-of-the-art performance for English at the Update Summarization task of the last Text Analysis Conference (TAC) 2009 and integrated with EMM represents the first online summarization system able to produce summaries for so many languages. We discuss the context and motivation for developing the system and provide an overview of its architecture. The paper is intended to serve as accompaniment of a live demo of the system, which can be of interest to researchers and engineers working on multilingual open-source news analysis and mining.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mijail Kabadjov
    • 1
  • Martin Atkinson
    • 1
  • Josef Steinberger
    • 1
  • Ralf Steinberger
    • 1
  • Erik van der Goot
    • 1
  1. 1.Joint Research Centre, European CommissionIspra (VA)Italy

Personalised recommendations